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Introduction 
 

In this supplement to Chapter 3 in the bound course notes, we will outline the shading 

capabilities of the new RADEON™ 9700 graphics processor and illustrate its power with a series of 

examples.  After a brief overview of vertex shading on the RADEON™ 9700, we will spend the bulk of 

the time on the fragment (aka pixel) shader programming model.  For much of this chapter, we will use 

Direct3D® syntax due to its brevity and readability, but all of this functionality (as shown in the section 

on homomorphic factorization of BRDFs) is available through multivendor and ATI-developed OpenGL 

extensions. 

 

RADEON™ 9700 Vertex Shaders 
 

The vertex shading model in the RADEON™ 9700 has advanced beyond the programming 

model found in previous graphics processors such as the RADEON™ 8500 by adding constant-based 

flow control capabilities.  The motivation for this extension to the earlier programming models is to cut 

down on the number of shaders that must be created and managed by application developers.  In 

previous vertex shader programming models such as the one found in DirectX® 8.1, developers 

generally had to create and use large numbers of shaders from fragments of shader code.  This was 

necessary to handle the large numbers of permutations of drawing state (i.e. with/without environment 

mapping, with/without skinning, different numbers of and types of lights etc).  The vertex shading 

model found in the RADEON™ 9700 enables developers to create a much smaller set of domain-

specific über shaders which can contain constant-based loops, subroutines and branches to manage the 

permutation problem. 
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Vertex Shader Assembly Language 
 

Like the vertex shading model in the previous generation of graphics processors, the 

RADEON™ 9700 can read from a bank of 4D float vectors as well as the input vertex components.  A 

bank of read/write temps is available for intermediate computations and a bank of write-only output 

registers define the output from the vertex shader.  Specific register counts for the RADEON™ 9700 are 

listed below. 

 
Type Name Count 

Float Constant c[n] 256 read-only vectors 
Temporary rn 12 read/write vectors 
Input vn 16 read-only vectors 

 
RADEON™ 9700 ALU Register Counts 

 

 In addition to the ALU-related inputs and temps above, the RADEON™ 9700 supports a set of 

constants and a counter to control the flow of execution as shown below. 

 
Type Name Count 

Integer Constant In 16 read-only vectors
Address A 1 read/write vector 
Loop Counter aL 1 scalar 
Boolean Constant B 16 read-only bits 

 
RADEON™ 9700 Flow Control Register Counts 

 

 These constants are set through API calls and persist until set again.  In this way, an application 

can program the control flow by setting a shader once and updating a few flow-control constants as 

appropriate.  A vertex shader on the RADEON™ 9700 can be up to 256 instructions long, though more 

instructions than this may be executed due to looping, subroutines etc.  The ALU instruction set 

supports the usual functionality such as ADD, DP3, DP4, EXP, FRAC, LOG, MAD, MAX, MIN, 

MOV, MUL, RCP, RSQ, SGE (set greater than or equal to) and SLT (set less than).  The control flow 

instructions include CALL, LOOP, ENDLOOP, JUMP, JNZ, LABEL, REPEAT, ENDREPEAT and 

RETURN. 
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RADEON™ 9700 Pixel Shaders: First with Floating Point 
 

The pixel shading model in the RADEON™ 9700 has also made a large step forward from 

previous generations, particularly due to the leap from fixed point internal computations to floating 

point.  The new model goes beyond the models found in previous graphics processors such as the 

RADEON™ 8500 by adding support for floating point, an instruction set appropriate for per-pixel 

floating point operations and significantly greater program length. 

 

Type Name Count 
Vertex Color vn 2 read-only vectors 
Temporary rn 12 read/write vectors 
Constant cn 32 read-only vectors
Sampler sn 16 read-only 
Texture Coordinate tn 8 read-only vectors 

 
RADEON™ 9700 Pixel Shader Registers 

 

 These inputs and temporary registers may be operated on by a pixel shader with up to 64 ALU 

instructions and 32 texture instructions.  The ALU instruction set has been extended to include 

instructions appropriate to floating point data such as reciprocal and reciprocal square root.  The ALU 

instruction set is made up of instructions such as ADD, MOV, MUL, MAD, DP3, DP4, FRAC, RCP, 

RSQ, EXP, LOG and CMP. 

 The texture instructions of the RADEON™ 9700 are used to sample data from texture maps and 

to conditionally kill pixels altogether.  The texture loading instructions include the plain TEXLD 

instruction, the projective TEXLDP instruction and the TEXLDBIAS instruction.  The TEXLDBIAS 

instruction can be used to apply a per-pixel LOD bias to any texture map access.  This can be used for a 

wide variety of applications including simulation of rough specular surfaces and general blurriness.  We 

will show examples of this in the motion blur and car paint shaders later in these notes.  The TEXKILL 

instruction can be used to conditionally kill pixels based on the signs of register components. 
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Samplers and Texture Coordinates 
 

 In the pixel shader programming model of the RADEON™ 9700, samplers and texture 

coordinates are completely decoupled.  Texture coordinates are iterated across polygons and may be 

used to sample data through a sampler.  At any one time, a given sampler is associated with a specific 

texture map in memory as well as a set of filtering state and texture coordinate clamping state.  The 

RADEON™ 9700 can iterate up to 8 4D texture coordinates and has 16 samplers.  Naturally, it is 

possible to sample from a single sampler multiple times in a given shader using different texture 

coordinates.  This is common when performing image processing operations as we will show later in the 

High Dynamic Range bloom and image space outlining examples. 

 

Pixel Shader Outputs 
 

The pixel shading unit of the RADEON™ 9700 can output up to four colors to different render 

targets.  The ability to output to multiple render targets simultaneously allows multiple intermediate 

values to be saved out between rendering passes and allows for implementation of G-buffer techniques 

[Saito and Takahashi 1990].  An image-space outlining technique, as described by Saito and Takahashi, 

using multiple simultaneous pixel shader outputs is shown later in these notes and in the SIGGRAPH 

2002 sketch Real-Time Image-Space Outlining for Non-Photorealistic Rendering. 

 

Now that we’ve given a brief introduction to the shader programming models, we’ll discuss the 

common example shaders used by all presenters in this course: Bumped Cubic Environment Mapping, 

McCool’s Homomorphic Factorization of BRDFs and Procedural Wood.  Subsequently, we’ll present 

additional shaders including high-dynamic range rendering, motion blur, image space outlining and two-

tone car paint in order to illustrate usage of many of the new aspects of the RADEON™ 9700 pixel 

shader programming model. 

  

The Common Example Shaders 
 

 All of the presenters in this course have been asked to implement a set of common example 

shaders to aid in understanding the differences between the programming models.  In this section, we 
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will discuss our implementations of the common shaders using DirectX® 8.1’s ps.1.4 programming 

model, the ATI_fragment_shader model and DirectX® 9’s ps.2.0 programming model. 

 

Bumped Cubic Environment Mapping 

 
Cubic environment mapping has become a common environment mapping technique for 

reflective objects.  Specifying a normal per-pixel in order to apply local detail or an Appearance 

Preserving Simplification technique [Cohen et al 1998] is becoming increasingly popular, even in 

conjunction with cubic environment mapping.  In fact, the two-tone layered car paint example shown 

later in these notes uses a high-precision normal map derived from appearance preserving simplification.  

In this first common example shader, however, we will use a simple model and a basic ps.1.4 shader 

which does cubic environment mapping based on per-pixel normals from a normal map.  A reflection 

vector is calculated per-pixel and is used to access a specular cubic environment map.  This shader, 

introduced last year in the ATI Treasure Chest Demo, also does diffuse cube mapping and combines this 

with the specular environment map based on a per-pixel Fresnel term in one rendering pass [Brennan 

02].  As it turns out, these additional effects basically come for free when implementing bumped cubic 

environment mapping, particularly in the RISC pixel shading models found in the RADEON™ 8000 

and 9000 series GPUs. 

 

The fundamental operation performed by this shader is transformation of a normal from tangent 

space into the space of the cube map to be sampled (world space, say).  This operation can be performed 

in ps.1.4 with a series of 3 dot products with write masks to perform the 3D rotation which gives us the 

correct normal N.  Subsequently, the interpolated eye vector E is reflected through this vector using the 

typical reflection operation: 

EENNR +⋅= )(2  

or if the normal is not of unit length: 

)()(2 NNEENNR ⋅+⋅=  

 

The reflection vector, R, is used to do a dependent read from a cubic environment map.  

Additionally, due to the RISC nature of ps.1.4, we can set aside the intermediate result, N, and use it to 

do a dependent read from a diffuse cube map.  It is also possible to sample several other maps including 
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a base texture map and a colored gloss map.  These terms plus a per-pixel Fresnel term can easily be 

composited together in one pass as shown in [Brennan 02]. 

 

A simple pixel shader which does only the diffuse and specular dependent cube map lookups is 

shown below. 

 

 ps.1.4 
 def c0, 1,1,1,1 
 
 texld   r0, t0                  ; Look up normal map 
 texcrd  r1.xyz, t4              ; Eye vector 
 texcrd  r4.xyz, t1              ; 1st row of environment matrix 
 texcrd  r2.xyz, t2              ; 2st row of environment matrix 
 texcrd  r3.xyz, t3              ; 3rd row of environment matrix 
 
 dp3     r4.x, r4, r0_bx2        ; N.x = 1st row of matrix multiply 
 dp3     r4.y, r2, r0_bx2        ; N.y = 2nd row of matrix multiply 
 dp3     r4.z, r3, r0_bx2        ; N.z = 3rd row of matrix multiply 
 dp3_x2  r3.xyz, r4, r1          ; 2(N.Eye) 
 mul     r3.xyz, r4, r3          ; 2N(N.Eye) 
 dp3     r2.xyz, r4, r4          ; N.N 
 mad     r2.xyz, -r1, r2, r3     ; 2N(N.Eye) - Eye(N.N)  
 
 phase 
 
 texld   r2, r2                  ; Sample cubic reflection map 
 texld   r3, t0                  ; Sample base map with gloss in alpha 
 texld   r4, r4                  ; Sample cubic diffuse map 
 
 mul     r1.rgb, r3.a, r2        ; Specular = Gloss * Reflection 
 mad     r0.rgb, r3, r4, r1      ; Base*Diffuse + Specular 
+mov     r0.a, c0.a              ; Put 1.0 in alpha 
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Homomorphic Factorization BRDF 
 The second of the common example shaders is based upon techniques outlined in McCool et al’s 

Homomorphic Factorization of BRDFs for High-Performance Rendering from SIGGRAPH 2001.  On 

modern GPUs like the RADEON™ 8500 or RADEON™ 9700, the actual pixel shader used in this 

technique is very simple to execute in one pass.  For most of the materials rendered by McCool’s sample 

application, the equation to be evaluated is one of the following: 

 
1. (((diffuse * tex0) * scale1) * tex1 * scale2) * tex2 
2. (((diffuse * tex0) * scale1) * tex1 * scale2) * tex2 + tex3 
3. (((diffuse * tex0) * scale1) * tex1 * scale2) * tex2) * tex3 

 

Using OpenGL ATI_fragment_shader notation, these equations can easily be evaluated: 
 

glBeginFragmentShaderATI(); 
 
glSampleMapATI (GL_REG_0_ATI, GL_TEXTURE0_ARB, GL_SWIZZLE_STR_ATI); // Sample maps 
glSampleMapATI (GL_REG_1_ATI, GL_TEXTURE1_ARB, GL_SWIZZLE_STR_ATI); 
glSampleMapATI (GL_REG_2_ATI, GL_TEXTURE2_ARB, GL_SWIZZLE_STR_ATI); 
 
if (param == PARAM_OHI_H)   // only sample the specular map if necessary 
{ 
   if (sg_tex3Type == GL_TEXTURE_CUBE_MAP_ARB) { 
      glSampleMapATI (GL_REG_3_ATI, GL_TEXTURE3_ARB, GL_SWIZZLE_STR_ATI); } 
   else { 
      glSampleMapATI (GL_REG_3_ATI, GL_TEXTURE3_ARB, GL_SWIZZLE_STQ_ATI); } 
} 
 
// r0 = diffuse * tex0 * scale1 
glColorFragmentOp2ATI (GL_MUL_ATI, GL_REG_0_ATI,         GL_NONE, scale1, 
                                   GL_PRIMARY_COLOR_EXT, GL_NONE, GL_NONE, 
                                   GL_REG_0_ATI,         GL_NONE, GL_NONE); 
 
// r0 = (diffuse * tex0 * scale1) * tex1 * scale2 
glColorFragmentOp2ATI (GL_MUL_ATI, GL_REG_0_ATI, GL_NONE, scale2, 
                                   GL_REG_1_ATI, GL_NONE, GL_NONE, 
                                   GL_REG_0_ATI, GL_NONE, GL_NONE); 
 
if (param == PARAM_OHI_H)  // do a MAD if specular map is used 
{ 
   // r0 = ((diffuse * tex0 * scale1) * tex1 * scale2) * tex2 + tex3 
   glColorFragmentOp3ATI (GL_MAD_ATI, GL_REG_0_ATI, GL_NONE, GL_NONE, 
                                      GL_REG_0_ATI, GL_NONE, GL_NONE, 
                                      GL_REG_2_ATI, GL_NONE, GL_NONE, 
                                      GL_REG_3_ATI, GL_NONE, GL_NONE); 
} else{ 
   // r0 = ((diffuse * tex0 * scale1) * tex1 * scale2) * tex2 
   glColorFragmentOp2ATI (GL_MUL_ATI, GL_REG_0_ATI, GL_NONE, GL_NONE, 
                                      GL_REG_0_ATI, GL_NONE, GL_NONE, 
                                      GL_REG_2_ATI, GL_NONE, GL_NONE);} 
glEndFragmentShaderATI(); 
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Parameterized Volumetric Wood 
 

Procedural generation of texture patterns is a popular technique for a 

variety of reasons including reduced storage space and customizability through 

intuitive parameters.  A seminal example of this is the venerable wood shader 

from the RenderMan Companion.  

 In this section, we present a shader which procedurally generates wood 

in an attempt to mimic the real wood samples running down the left side of the 

page.  The shader is based on the parametrized wood shader in Chapter 12.4 of 

Advanced RenderMan by Apodaca and Gritz. 

 

 
Non-real-time Gumbos from Advanced RenderMan 

 

The real-time version of this shader uses a single 128×128×128 

luminance-only 3D noise texture and one 1D function texture to evaluate a 

pulse-train composed of smoothstep() functions, for a total of around 2 MB of 

texture memory.  Of course, the power of this approach is that it’s parametrized 

so that a variety of woods can be generated by tweaking a small number of 

intuitive input parameters to a single shader.  Also, the sample application used 

here has been developed so that an artist can interactively position the geometry 
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anyplace in shader space (i.e. at any position in the virtual log) in order to obtain a particular look.  The 

disadvantage of this wood implementation is the relatively high computational cost of executing the 

shader.  The input parameters to the shader are two wood colors (Clightwood and Cdarkwood), ring frequency 

(freq), noise amplitude (amp), trunk wobble frequency, trunk wobble amplitude, specular exponent scale 

and specular exponent bias. 

 Computation occurs in shader space and a pixel’s position in this space is denoted as Pshade.  

This allows us to position the volumetric wood relative to the object by transforming Pshade in the vertex 

shader.  This is a similar technique to the per-pixel distance attenuation used in the RADEON™ 8500 

Treasure Chest Demo which procedurally computes distance attenuation from the light space position 

interpolated across polygons [Vlachos 02].  In fact, for sampling noise into this wood shader, we will 

interpolate five 3D positions: Pshade and four simple shifts and scales of Pshade.  This allows us to sample 

the same 3D scalar noise texture multiple times to get vector noise whose channels are reasonably 

uncorrelated. 

 

Basic Concentric Rings 

 

 We will begin with a simple shader which defines cylindrical bands around the shader space z 

axis.  The intermediate value r is computed as follows: 

 

freqPPr
yx shadeshade *22 +=  

 

 This gives us the distance from the shader space z axis which is scaled by freq.  We will use r as 

a texture coordinate into a 1D luminance texture which defines the shape of each ring as it radiates out 

from the shader space z axis.  This 1D luminance texture is a smooth pulse train composed of 

smoothstep() functions which has been tuned to mimic the way that colors mix in wood.  A single 

smooth pulse is shown below: 
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Smooth Pulse Used to Blend Wood Colors 

  

 Using the luminance that we get back from the smooth pulse function texture shown above as a 

blend factor between Clightwood and Cdarkwood gives us the following effect on the familiar Gumbo model. 

 

 
Gumbo with procedural concentric rings 
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So far, our ps.2.0 shader code looks like the following 
 
ps.2.0 
 
def c0, 2.0f, -1.0f, 0.5f, 0.5f // scale, bias, half, X 
def c1, 1.0f, 1.0f, 0.1f, 0.0f  // X, X, 0.1, zero 
// c2: xyz == Light Wood Color, w == ringFreq 
// c3: xyz == Dark Wood Color 
 
dcl t0.xyzw                // xyz == Pshade (shader-space position), w == X 
 
dcl_2d     s1              // 1D smooth step function 
 
dp2add r0, t0, t0, c1.w    // x2 + y2 + 0 
rsq r0, r0.x               // 1/sqrt(x2 + y2) 
rcp r0, r0.x               // sqrt(x2 + y2) 
mul r0, r0, c2.w           // sqrt(x2 + y2) * freq 
 
texld r0, r0, s1           // Sample from 1D pulse train texture 
 
mov r1, c3 
lrp r2, r0.x, c2, r1       // Blend between light and dark wood colors 
 
mov oC0, r2 

 

The final vertex shader, which generates the inputs to all of the wood pixel shaders is shown 

below. 

 
dcl_position v0 
dcl_normal   v3 

 
def c40, 0.0f, 0.0f, 0.0f, 0.0f  

 
m4x4 oPos, v0, c[0]           // Transform position to clip space 

 
m4x4 r0, v0, c[17]            // Transformed Pshade (using texture matrix 0) 
mov oT0, r0 
m4x4 oT1, v0, c[21]           // Transformed Pshade (using texture matrix 1) 
m4x4 oT2, v0, c[25]           // Transformed Pshade (using texture matrix 2) 

 
mov r1, c40 
mul r1.x, r0.z, c29.x         // {freq*Pshade.z, 0, 0, 0} 
mov oT3, r1                   // {freq*Pshade.z, 0, 0, 0} for 1D trunkWobble noise in X 
mov r1, c40 
mad r1.x, r0.z, c29.x, c29.y  // {freq*Pshade.z + 0.5, 0, 0, 0} 
mov oT4, r1                   // {freq*Pshade.z + 0.5, 0, 0, 0} for 1D trunkWobble noise in Y 

 
m4x4 oT6, v0, c[4]            // Transform position to eye space 
m4x4 oT7, v3, c[8]            // Transform normal to eye space 

 

Incorporating Noise 

 

 The ring pattern that we’ve generated so far is obviously too regular for believable wood and 

needs to be made more noisy.  Since we do not yet have native noise hardware, we will use a texture to 

look up the noise.  In this example, we will sample a 3D texture which contains several octaves of 
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tilable signed scalar fractional Brownian motion noise.  We will sample this map 3 times using shifted, 

negated and slightly scaled values of Pshade to construct reasonably uncorrelated vector fractional 

Brownian motion noise.  This signed vector noise is added to Pshade prior to the computation of r above. 

 

Vector fractional Brownian motion noise Gumbo with “noised up” rings 
 

 

Incorporating this additional noise, our ps.2.0 shader code looks like the following 

 
ps.2.0 
 
def c0, 2.0f, -1.0f, 0.5f, 0.5f // scale, bias, half, X 
def c1, 1.0f, 1.0f, 0.1f, 0.0f  // X, X, 0.1, zero 
// c2: xyz == Light Wood Color, w == ringFreq 
// c3: xyz == Dark Wood Color,  w == noise amplitude 
// c4: xyz == L_eye,  w == trunkWobbleAmplitude 
 
dcl t0.xyzw                // xyz == Pshade (shader-space position), w == X 
dcl t1.xyzw                // xyz == Perturbed Pshade, w == X 
dcl t2.xyzw                // xyz == Perturbed Pshade, w == X 
 
dcl_volume s0              // Luminance-only Volume noise 
dcl_2d     s1              // 1D smooth step function 
 
texld r3,  t0, s0          // Sample dX from scalar noise at P  shade
texld r4,  t1, s0          // Sample dY from scalar noise at perturbed Pshade 
texld r5,  t2, s0          // Sample dZ from scalar noise at perturbed Pshade 
 
mov r3.y, r4.x             // Put dY in y 
mov r3.z, r5.x             // Put dZ in z 
mad r3, r3, c0.x, c0.y     // Put noise in -1..+1 range 
mad r7, c3.w, r3, t0       // Scale by amplitude and add to Pshade to warp the domain 
dp2add r0, r7, r7, c1.w    // x2 + y2 + 0 
rsq r0, r0.x               // 1/sqrt(x2 + y2) 
rcp r0, r0.x               // sqrt(x2 + y2) 
mul r0, r0, c2.w           // sqrt(x2 + y2) * freq 
 
texld r0, r0, s1           // Sample from 1D pulse train texture 
 
mov r1, c3 
lrp r2, r0.x, c2, r1       // Blend between light and dark wood colors 
mov oC0, r2 

 

3.1 - 12 
 



SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes 

Trunk Wobble 

 

This level of noise is definitely an improvement, but the rings are still all centered around the z 

axis.  We can add noise to Pshade.x and Pshade.y as a function of z to cause the trunk to wobble as it varies 

in z.  This effect alone essentially causes a wobbly tree trunk as shown below. 

      
Tree trunk without wobble and with wobble in x and y as a function of z 

 

To incorporate noisy trunk wobble into this shader, we sample the volume noise map at two 

different locations (which are functions of Pshade.z) along the y = z = 0 column of texels in our volume 

noise map.  These two scalar values are added to x and y in the pixel shader, causing the rings to wobble 

as shown in the diagram above.  The effect of this wobbling on our Gumbo dataset is shown below. 

 

 
Gumbo with “noised up” rings and wobbly tree trunk 
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Incorporating the previous noise and the perturbations to make the trunk wobble, our ps.2.0 

shader code looks like the following. 

 
ps.2.0 
 
def c0, 2.0f, -1.0f, 0.5f, 0.5f // scale, bias, half, X 
def c1, 1.0f, 1.0f, 0.1f, 0.0f  // X, X, 0.1, zero 
// c2: xyz == Light Wood Color, w == ringFreq 
// c3: xyz == Dark Wood Color,  w == noise amplitude 
// c4: xyz == L_eye,  w == trunkWobbleAmplitude 
 
dcl t0.xyzw                // xyz == Pshade (shader-space position), w == X 
dcl t1.xyzw                // xyz == Perturbed Pshade, w == X 
dcl t2.xyzw                // xyz == Perturbed Pshade, w == X 
dcl t3.xyzw                // xyz == {Pshade.z, 0, 0}, w == X 
dcl t4.xyzw                // xyz == {Pshade.z + 0.5, 0, 0}, w == X 
 
dcl_volume s0              // Luminance-only Volume noise 
dcl_2d     s1              // 1D smooth step function (blend factor in x, specular exponent in y, ...) 
 
texld r3,  t0, s0          // Sample dX from scalar volume noise texture at P  shade
texld r4,  t1, s0          // Sample dY from scalar volume noise texture at perturbed Pshade 
texld r5,  t2, s0          // Sample dZ from scalar volume noise texture at perturbed Pshade 
 
texld r6, t3, s0           // Sample trunkWobble.x from scalar volume noise at {Pshade.z, 0, 0} 
texld r7, t4, s0           // Sample trunkWobble.y from scalar volume noise at {Pshade.z + 0.5, 0, 0} 
 
mov r3.y, r4.x             // Put dY in y 
mov r3.z, r5.x             // Put dZ in z 
 
 
mov r6.y, r7.x             // Move to get {trunkWobble.x, trunkWobble.y, 0} 
mad r6, r6, c0.x, c0.y     // Put {trunkWobble.x, trunkWobble.y, 0} in -1..+1 range 
 
mad r3, r3, c0.x, c0.y     // Put noise in -1..+1 range 
mad r7, c3.w, r3, t0       // Scale noise by amplitude and add to Pshade to warp the domain 
mad r7, c4.w, r6, r7       // Scale {trunkWobble.x, trunkWobble.y, 0} by amplitude and add in 
 
dp2add r0, r7, r7, c1.w    // x2 + y2 + 0 
rsq r0, r0.x               // 1/sqrt(x2 + y2) 
rcp r0, r0.x               // sqrt(x2 + y2) 
mul r0, r0, c2.w           // sqrt(x2 + y2) * freq 
 
texld r0, r0, s1           // Sample from 1D pulse train texture 
 
mov r1, c3 
lrp r2, r0.x, c2, r1       // Blend between light and dark wood colors 
 
mov oC0, r2 

 

At this point, we have procedurally generated the albedo of the wood in a 2.0 pixel shader.  Next 

we will Phong shade the surface using pixel shader instructions to compute L from the position of a 

single light source and perform several renormalization operations along the way—operations that were 

previously impossible to carry out in the pixel pipeline due to limited range and precision.  With the 

floating point pixel pipeline of the RADEON™ 9700, true Phong shading is now possible in real-time. 
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With the procedural albedo generation and Phong shading (where specular exponent is also a 

function of the smoothstep function, giving different specular exponents to the different wood rings), 

our final pixel shader looks like the following: 
 
ps.2.0 
 
def c0, 2.0f, -1.0f, 0.5f, 0.5f // scale, bias, half, X 
def c1, 1.0f, 1.0f, 0.1f, 0.0f  // X, X, 0.1, zero 
// c2: xyz == Light Wood Color, w == ringFreq 
// c3: xyz == Dark Wood Color,  w == noise amplitude 
// c4: xyz == L_eye,  w == trunkWobbleAmplitude 
// c5: {X, X, expScale, expBias} 
 
dcl t0.xyzw                // xyz == Pshade (shader-space position), w == X 
dcl t1.xyzw                // xyz == Perturbed Pshade, w == X 
dcl t2.xyzw                // xyz == Perturbed Pshade, w == X 
dcl t3.xyzw                // xyz == {Pshade.z, 0, 0}, w == X 
dcl t4.xyzw                // xyz == {Pshade.z + 0.5, 0, 0}, w == X 
dcl t6.xyzw                // xyz == P_eye, w == X 
dcl t7.xyzw                // xyz == N_eye, w == X 
 
dcl_volume s0              // Luminance-only Volume noise 
dcl_2d     s1              // 1D smooth step function (blend factor in x, specular exponent in y, ...) 
 
texld r3,  t0, s0          // Sample dX from scalar volume noise texture at P  shade
texld r4,  t1, s0          // Sample dY from scalar volume noise texture at perturbed Pshade 
texld r5,  t2, s0          // Sample dZ from scalar volume noise texture at perturbed P  shade
texld r6, t3, s0           // Sample trunkWobble.x from scalar volume noise at { Pshade.z, 0, 0} 
texld r7, t4, s0           // Sample trunkWobble.y from scalar volume noise at { Pshade.z + 0.5, 0, 0} 
 
mov r3.y, r4.x             // Put dY in y 
mov r3.z, r5.x             // Put dZ in z 
mov r6.y, r7.x             // Move to get {trunkWobble.x, trunkWobble.y, 0} 
mad r6, r6, c0.x, c0.y     // Put {trunkWobble.x, trunkWobble.y, 0} in -1..+1 range 
mad r3, r3, c0.x, c0.y     // Put noise in -1..+1 range 
mad r7, c3.w, r3, t0       // Scale noise by amplitude and add to Pshade to warp the domain 
mad r7, c4.w, r6, r7       // Scale {trunkWobble.x, trunkWobble.y, 0} by amplitude and add in 
 
dp2add r0, r7, r7, c1.w    // x2 + y2 + 0 
rsq r0, r0.x               // 1/sqrt(x2 + y2) 
rcp r0, r0.x               // sqrt(x2 + y2) 
mul r0, r0, c2.w           // sqrt(x2 + y2) * freq 
 
texld r0, r0, s1           // Sample from 1D pulse train texture 
 
mov r1, c3 
lrp r2, r0.x, c2, r1       // Blend between light and dark wood colors 
sub r4, c4, t6             // Compute normalized vector from vertex to light in eye space  (Leye) 
dp3 r5.w, r4, r4           // 
rsq r5.w, r5.w             // 
mul r4, r4, r5.w           // L  eye

dp3 r6.w, t7, t7           // Normalize the interpolated normal 
rsq r6.w, r6.w             // 
mul r5, t7, r6.w           // N  eye

dp3 r3.w, t6, t6           // Compute normalized vector from the eye to the vertex   
rsq r3.w, r3.w             // 
mul r3, -t6, r3.w          // V  eye

add r6, r3, r5             // Compute Eye-Space HalfAngle (Leye +Veye)/|L_eye+Veye| 
dp3 r6.w, r6, r6 
rsq r6.w, r6.w 
mul r6, r6, r6.w           // H  eye

dp3_sat r6, r5, r6         // N·H 
mad r0.z, r0.z, c5.z, c5.w // scale and bias wood ring pulse to specular exponent range 
pow r6, r6.x, r0.z         // (N·H)k  
dp3 r5, r4, r5             // Non-clamped N·L 
mad_sat r5, r5, c0.z, c0.z // "Half-Lambert" trick for more pleasing diffuse term 
mul r6, r6, r0.y           // Gloss the highlight with the ramp texture 
mad r2, r5, r2, r6         // N·L * procedural albedo + specular 
mov oC0, r2 
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 The final shader gives us the following result. 

 

 
Final Shader on one Gumbo 

 

 

 
Final Shader on test scene 
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Additional Shaders 
 

 Now that we’ve covered the compulsory shaders for this course, I’ll introduce some additional 

shaders to illustrate a variety of new applications enabled by the RADEON™ 9700.  This diverse 

collection of shaders includes several steps of the High Dynamic Range Rendering process, motion blur, 

local reflections, a two-tone car paint model and image-space outlining. 

 

High Dynamic Range Rendering 
 

 With the extended range and precision of 

the RADEON™ 9700, it is possible to do a 

variety of rendering operations in High Dynamic 

Range (HDR) space.  In fact, we have 

implemented Paul Debevec’s Rendering With 

Natural Light animation in real-time to illustrate 

the ability to do real-time image-based lighting in 

HDR space.  The block diagram to the right 

shows the high-level approach to rendering that is 

used in the real-time and non-real-time renderings 

of the Rendering with Natural Light animation.  

The bulk of these operations need to be performed 

in High Dynamic Range Space in order to truly 

represent the wide range of radiances present in a 

real-world scene [Debevec et al 1998].  The 

objects in the scene, illuminated with HDR 

images, are first rendered into an HDR image of 

the scene.  A bloom filter is applied to the image 

to give the image a soft look, simulating light 

scattering in the eye or the optics viewing the 

virtual scene.  The blooms are added back to the HDR rendering of the scene.  This sum is then 

vignetted and tone mapped down to a displayable range. 
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HDR Implementation on RADEON™ 9700 

 

 The image to the right is a 

typical frame from the real-time 

Rendering with Natural Light demo.  

The first step in rendering a frame of 

this animation is generation of the 

planar reflection map for the table top.  

The HDR planar reflection map is 

rendered to a 16-16-16-16 texture.  

Once we have the reflection map, the 

objects are rendered into the scene, 

using HDR diffuse, specular and rough 

specular illumination maps as 

appropriate for each material.  The 

table top is textured with the planar reflection map generated earlier in the frame.  The local reflections 

and refractions on the spheres in the scene are handled using a special shader which will be discussed 

later in these notes. 

 

Frame Postprocessing 

 

 After the 16-16-16-16 HDR image of the scene is rendered, a set of three Gaussian filters 

covering a region of 50×50 pixels are applied to the image.  This is achieved in three steps since the 

Gaussian is separable. The first step is downsizing the image to ¼ of its original size (½ in x and ½ in y).  

Three Gaussians with σ=2, σ=6 and σ=14 are applied in two more steps.  The first of these performs the 

first pass of the separable blurs on the ¼ size image.  It computes an appropriately weighted sum of a 

column of 25 pixels centered on the current pixel and saves the results to a temporary buffer.  This 

temporary buffer is then processed to apply the filter in the horizontal direction.  In this same pass, the 

Gaussians are added back to the original image, tone mapped and vignetted to create the final image 

which is rendered to an 8-8-8-8 surface that can be read by the DAC. 
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 The tone mapping process allows us to simulate different exposure levels by simply applying a 

different curve to the rendered HDR image.  Four examples are shown below. 

 

 
High Dynamic Range scene at four different exposure levels 

 

 All four of these images were generated by applying different tone-mapping curves to the same 

real-time rendered HDR image. 
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Local Reflections and Refractions  

 

 In the real-time Rendering with Natural Light demo, it is necessary to compute local and non-

local reflections when rendering the balls in the scene.  This is done with two key techniques. 

 

 
 

First, a separate cube map is stored for each of the 10 spheres in the scene.  These cubemaps are 

rendered once during a preprocessing step from the center of the corresponding sphere and contain a 

mask channel which masks the local (other objects in the scene) and non-local (distant environment) 

parts of the scene.  This mask channel is used to isolate local and non-local contributions to the 

illumination of each sphere as it is rendered into the HDR scene. 

 

Second, some creative reflection and refraction calculations are done when computing the cube 

map coordinates for the local environment map.  For the bottom quarter of the sphere, surface normals 

are used to index the cube map while pure reflection vectors are used on the top quarter.  For the middle 

section of the sphere, a blend between the normals and reflection vectors is used.  This is necessary to 

ensure that the spheres appear to be in contact with the pedestals upon which they are resting in the 

scene.  These non-standard vectors are used to access the local environment map while “standard” 
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reflection vectors are used to access the distant HDR light probe.  The mask channel of the local 

reflection cube map is used to select between the two cube maps.  The pixel shader for the opaque 

reflective (non-refractive) metal balls is shown below. 

 
         ps.2.0 
         dcl_cube s0 
         dcl_cube s1 
         dcl t0                          // normal 
         dcl t1                          // view vector 
          
         dp3    r2.a, t0, t0 
         rsq    r2.a, r2.a 
         mul    r2.rgb, t0, r2.a         // normalized normal 
 
         dp3    r3.a, t1, t1 
         rsq    r3.a, r3.a 
         mul    r3.rgb, t1, r3.a         // normalized view vector 
 
         dp3    r4.a, r2, r3             // N.V 
         mul    r4.rgb, r4.a, r2         // N(N.V) 
         mad    r4.rgb, r4, c0.w, -r3    // R = 2N(N.V)-V 
 
         mad_sat r2.a, -r2.y, c4.r, c4.g // curve on sphere (y up) 
         lrp    r5, r2.a, r2, r4         // lerp between N and R 
        
         texld r0, r4, s0 
         texld r1, r5, s1 
 
         mul r0.rgb, r0, r0.a            // Decompress hdr env map 
         mul r0.rgb, r0, c2.r            // Brighten hdr env map (reflection) 
          
         mul     r1.a, r1.a, r1.a 
         lrp     r2.rgb, r1.a, r1, r0 
 
         mul      r0.rgb, r2, c1         // color hdr env map 
         mov      r0.a, r0.a 
         mad      r0, r0, c7.r, c7.g     // attenuation and additive factor 
 
         mov      oC0, r0 
 

Pixel shader for opaque reflective (non-refractive) metal balls 
 

The transparent spheres in the scene use slightly different shaders which contain refractive terms.  

Additionally, the rough specular spheres use a per-object LOD bias to sample from a blurrier 

environment map as well as an image-based diffuse term generated from the original light probe in 

HDRShop. 
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Motion Blur on Balls in Real-Time Animusic Demo 

 

 To demonstrate many 

of the features of the 

RADEON™ 9700, we 

implemented a real-time 

version of the Animusic Pipe 

Dream Animation shown in the 

SIGGRAPH 2001 Electronic 

Theater.  One simple but 

powerful shader that we wrote 

for this real-time demo is the 

motion blur shader used on the 

numerous flying balls in the 

scene.  Rather than draw the moving balls several times at different points in space and time as one 

might do with an accumulation buffer [Haeberli and Akeley 1990], we chose to draw each ball once, 

distorting its appearance to make it appear as if it were in motion during the frame “exposure.”  This 

technique is an extension to the approach taken by [Wloka and Zeleznik 1996].  The previous work 

eliminates the obvious discrete renderings of the ball which would be inevitable in an accumulation 

buffer approach, while our shader also accounts for blurring of the object and computing a more 

accurate approximation to its contribution to the scene over time.  To achieve the look we wanted, we 

used a vertex shader and a pixel shader to distort both the shape and shading of the balls. 

 

Distorting the Shape 
 

In the diagram below, we show how the ball’s shape is distorted by the vertex shader in the 

direction tangent to the path of motion at the time instant centered in the current finite shutter time.  

Each ball is modeled as a “capsule” (two hemispheres with a connecting cylinder) which is aligned with 

the direction of motion.  The vertex shader stretches the ball tangent to the direction of motion as shown 

below.  The vertices of the front half of the capsule (those whose normals have a positive dot product 

with the direction of motion) are pushed in the direction of motion and the vertices of the back half 

capsule (those whose normals have a negative dot product with the direction of motion) are pulled in the 
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opposite direction.  Naturally, the total amount of stretching is the amount of distance the ball moved 

since the previous frame. 

 

 
 

 The capsule geometry is stretched in the vertex shader as a function of distance traveled, d, 

measured in ball diameter units.  The vertex shader also computes a blurriness factor from 1 / (1 + d), 

shown in the curve below.  This factor is interpolated across the polygons and used by the pixel shader 

to determine how much to blur the shading of the balls. 

 

 
Blurriness factor as a function of distance traveled 
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 As you can see from the curve, if the ball hasn’t moved at all, the blurriness factor is one.  The 

blurriness factor falls asymptotically to zero from there.  The relevant snippet of vertex shader code, 

which computes the blurriness factor, is as follows. 

 
         . . . 

 // Calculate a 0 to 1 blurriness factor. 
         mul  r9.y, r9.x, c19.x // /= BallSize => Distance traveled in ball lengths.  
         add  r9.z, r9.y, c0.z  // += 1 => coverage in ball lengths. 
         rcp  r9.z, r9.z        // 1/(1+DistanceTraveled/BallSize) => Alpha calculated from speed 
         sub  r9.z, c0.z, r9.z  // blur factor used for blurriness of ball 
         mov oT0.w, r9.z        // export blurriness 
  . . . 
 

Blurriness Computation from Motion Blur Vertex Shader 

 

Distorting the Shading 
 

In addition to merely stretching the capsule geometry along the tangent to the path of the ball’s 

motion, the shading of the object is affected by the blurriness factor computed above.  There are a 

number of factors which contribute to the ball color including two specular highlights and an 

environment map, all of which are blurred as a function of the ball’s motion during the frame.  In the 

case of the two specular highlights on each ball, the specular exponent and its intensity are lowered.  

This serves to spread out the highlight and make it appear to be blurred in the direction of the ball’s 

motion.  In essence, the goal is to spread the energy radiating from the specular highlight among the 

pixels that the specular highlight would move across during a finite frame exposure time.   In the case of 

the environment map, we use the texldb pixel shader instruction, which applies a per-pixel bias to 

selectively sample the smaller mip levels.  This blurs the environment map term. 

 
            ps.2.0 
            def c0, 0.0, 0.5, 1.0, 2 // common constants  
            dcl t0.xyzw   // Normal.   Blurriness in alpha 
            dcl t1.xyz    // View vector 
            dcl t2.xyz    // Light vector 1 
            dcl t3.xyz    // Light vector 2 
            dcl v0.rgb    // ambient lighting 
            dcl_cube s0   // environment map 
  
            // Normalize normal 
            dp3     r0.w,   t0, t0          // Normal length squared 
            rsq     r0.w,   r0.w            // 1 / Normal length 
            mul     r0.xyz, t0, r0.w        // Normalized normal 

 
            // Do reflections 
            dp3     r2.w, t1, r0            // V·N 
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            mad     r1.xyz, r2.w, r0, -t1   // W=(2V·N)N-V reflected view vector 
            dp3     r1.w,   r1, r1          // length squared 
            rsq     r1.w,   r1.w            // 1 / Normal length 
            mul     r1.xyz, r1, r1.w        // Normalized reflection 
 
          
            // Do blur calculation 
            mad_sat r2.x, -c0.w, t0.w, c0.w // Clamp(2-2*ext) 
            mul_sat r2.y, c0.w, t0.w        // Clamp(2*ext) 
            dp3_sat r2.z, r0, t1            // N·V 
            sub     r2.z, c0.z, r2.z        // 1-N·V 
            mad     r2.w, -r2.y, r2.z, c0.z // 1-Clamp(2*ext)*(1-N·V) 
            mul     r2.w, r2.w, r2.x        // Clamp(2-2*ext) * Clamp(1-2*ext)*(1-N·V) 
          
            // Blur texture 
            mul     r1.w, t0.w, c1.y        // blurAmount * textureBlur 
            texldb  r5, r1, s0              // Sample reflections 
            mad     r6.rgb, r5, c2, v0      // Reflection * reflection color + ambient 
 
            // Calc specular blur 
            mul     r3.x, c1.z, t0.w        // Blur amount reduced specular exponent 
            add     r3.y, r3.x, c7.x        // Add into base specular exp. 
            max     r4.z, r3.y, c0.z        // Clamp to 1 
            mul     r3.w, t0.w, c1.w        // Specular dimming. 
            mad     r3.w, -r3.w, c1.x, c1.x // SpecIntensity-SpecIntensity*specular dim. 
 
            // Light 1 
            dp3_sat r3.x, r1, t2            // R·L 
            pow     r3.y, r3.x, r4.z        // R·Lk 
            mul     r3.z, r3.y, r3.w        // Dim specular 
            mul     r7.rgb, c3, r3.z        // *= LightColor * Falloff 
 
            // Light 2 
            dp3_sat r3.x, r1, t3            // R·L 
            pow     r3.y, r3.x, r4.z        // R·Lk 
            mul     r3.z, r3.y, r3.w        // Dim specular 
            mad     r7.rgb, c4, r3.z, r7    // *= LightColor * Falloff 
 
            // Combine 
            add     r0.rgb, r6, r7          // Diffuse + Specular 
            mov     r0.a, r2.w              // Copy blur to alpha 
            mul     r0.rgb, r0, r2.w        // Premultiply Src * SrcAlpha 
 
            mov     oC0, r0                 // Output 

 

Motion Blurred Ball Pixel Shader 

 

In the last few instructions of the pixel shader, the diffuse and specular components of 

illumination are combined.  Because the specular contribution can be greater than one, we perform part 

of the frame-buffer compositing operation (Src * SrcAlpha) in the pixel shader before the colors are 

clamped to the zero to one range.  Each pixel is composited with the frame buffer with a src + srcAlpha 

* Dest blend.  Doing the Src * SrcAlpha premultiplication in the pixel shader gives a more accurate 

result since it happens prior to pixel shader output color saturation. 

 

Motion Blur on Strings in Real-Time Animusic Pipe Dream Demo 
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 The motion blur on the strings in the real-time Animusic Pipe Dream is considerably simpler 

than it is for the balls, but the effect is still quite convincing.  Essentially, the goal is to render a string 

moving rapidly back and forth at a frequency much higher than the frame rate and the simulated finite 

frame exposure time.  For a given frame of our rendering, a moving string has a given amplitude.  That 

string is motion blurred by drawing two instances of it.  One of the instances of the plucked string is 

drawn opaque with both of the long sides of the string geometry bowed in the same direction.  The 

amount of bowing is equal to the amplitude of the string vibration during that frame.  The other instance 

of the string geometry is drawn semitransparent with the long sides of the string geometry bowed away 

from each other, covering the full range of motion of the vibrating string for that frame.  The 

transparency of this second string instance is proportional to the amplitude.  The effect of this motion 

blur is shown below. 

 

 
A Motion Blurred Ball and String from the Real-Time Animusic Pipe Dream Demo 

3.1 - 26 
 



SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes 

 

Two-tone Layered Car Paint Model 
 

 The next shader that 

we’ll cover is an interesting 

pixel shader effect 

simulating two-tone car 

paint.  The car model 

shown here has a relatively 

modest number of 

polygons, but uses a normal 

map generated from an 

appearance preserving 

simplification algorithm 

[Cohen et al 1998].  Due to the pixel shader operations performed and the subtle gradients across areas 

such as the hood, a 16 bit per channel normal map is necessary. 

 

Normal Map Decompression 

 

The first step in this pixel shader is normal decompression.  Since the normals are stored in 

surface local coordinates (aka tangent space), we can assume that the z component of the normals will 

be positive.  Thus, we can store x and y in two channels of a 16-16 texture map and derive z in the pixel 

shader from +sqrt (1 – x2 – y2).  This gives us much higher precision than a traditional 8-8-8-8 normal 

map (even 10 or 11 bits per channel is not enough for this particular shader) for the same memory 

footprint. 

 

Base Color 

 

 The normal decompression described above is performed on a surface normal map which is 

generated from an appearance preserving simplification process (N) and a high frequency normalized 

vector noise map (Nn) which is repeated across the surface.  These two normals are used to compute two 
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perturbed normals which are used simulate the two-toned nature of the paint as well as the microflake 

suspended in an inner coat of the paint. These normals, Ns and Nss are computed as follows: 

 
Ns = (aNn + bN) / |aNn + bN| , where a << b 
Nss = (cNn + dN) / |cNn + dN| , where c = d 

 
 The coefficients a, b, c and d above are constant input parameters to the pixel shader which 

essentially determine the distributions of the perturbed normals which in turn determine the width of the 

region in which the microflake is readily visible.  These two normals are dotted with the view vector and 

used as parameters in the following polynomial, which determines the color of the base coat and 

strength of the microflake term: 

 
c0(Ns·V) + c1(Ns·V)2 + c2(Ns·V)4 + c3(Nss·V)16 

 
 Essentially, the first three terms of this polynomial perform the blend between the two tones of 

the paint and the fourth adds an extra layer of sparkling from the microflake. 

 

Clear Coat Paint Layer and Rough Specular Trim 

 

The final step in rendering the painted areas of the car is inclusion of the clear coat through 

addition of an environment map as shown below. 

 

 
Two-tone, microflake, clear coat and final lighting on side rear-view mirror 
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 There is one interesting aspect of the clear coat term which the decision to store the environment 

map in an RGBScale form to simulate high dynamic range in a low memory footprint.  The alpha 

channel of the texture, shown on the right below, represents 1/16th of the true range of the data while the 

RGB, shown on the left below, represents the normalized color.  In the pixel shader, the alpha channel 

and RGB channels are multiplied together and multiplied by eight to reconstruct a cheap form of HDR 

reflectance.  This is multiplied by a subtle Fresnel term before being added to the lighting terms 

described above. 

 

    
RGB and Scale channels of top face of HDR cubic environment map 

 

Trim areas of the car such as the black hatch area on the back and the grooves around the door 

are separated out by monochrome base map.  The monochrome map knocks out the metal shading for 

those pixels of the car surface and also determines a per-pixel LOD bias to use when accessing the 

environment map.  This allows us to cheaply simulate more rough surfaces in trim areas.  We also chose 

to convert the color from the environment map to a luminance value in the pixel shader because we 

liked the look.  A rough-specular area is shown on the following page. 
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Rough specular on black hatch and other trim 

 

 The full pixel shader for the car paint and trim is shown below. 
 
 
PsConst 2 (8.0, 0.0, -0.5, 1.0)   // hdr map boost, hdr_alpha_no_glow, fresnel scale, fresnel bias 
PsConst 3 (-4.0, 4.0, 12.9, 0.50) // trim miplod scale, trim miplod bias, trim env scale, trim env bias 
PsConst 4 (0.10, 1.00, 16.0, 0.0) // sparkle str (color), sparkle str (glistens), exp for shimmering, 0 
PsConst 9 (0.500, 100.0, 0.0, 0.0)// hdr_alpha_no_glow, hdr_glow_boost 
 
PsConst 5 (0.4, 0.0, 0.35, 0.0)   // car color 0 
PsConst 6 (0.6, 0.0, 0.00, 0.0)   // car color 1 
PsConst 7 (0.0, 0.35, -0.35, 0.0) // car color 2 
PsConst 8 (0.5, 0.5, 0.0, 0.0)    // car sparkle color 
 
ps.2.0 
def c0, 0.0, 0.5, 1.0, 2.0 
def c1, 0.0, 0.0, 1.0, 0.0 
dcl_2d s0   // base map 
dcl_2d s1   // normal map 
dcl_cube s2 // cube env map 
dcl_2d s3   // sparkle map (color shift) 
dcl_2d s4   // sparkle map (sparkles) 
 
dcl t0      // tex coords 
dcl t1      // tanx 
dcl t2      // tany 
dcl t3      // tanz 
dcl t4      // view vector 
dcl t5      // sparkle map tex coords 
 
texld r0, t0, s1  // fetch from normal map 
texld r5, t0, s0  // fetch from grayscale gloss map          
texld r8, t5, s3  // fetch from sparkle map (color shift) 
texld r9, t5, s4  // fetch from sparkle map (sparkles) 
 
dp2add r0.a, r0, r0, -c0.z    // 1 - X2 + Y2 
rsq r0.a, r0.a                // 1 / sqrt(1 - X2 + Y2) 
rcp r0.b, r0.a                // z = sqrt(1 - X2 + Y2) 
 
mad r3, r8, c0.w, -c0.z       // bx2 on sparkle map (color shift) 
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mad r6, r3, c4.r, r0          // hack to add sparkle map to normal map 
 
mad r3, r9, c0.w, -c0.z       // bx2 on sparkle map (sparkles) 
mad r7, r3, c4.g, r0          // hack to add sparkle map to normal map 
 
mad r1.a, r5.r, c3.x, c3.y    // scale and bias for miplod bias based on alpha 
 
dp3  r4.a, t4, t4             // view vector mag squared 
rsq  r4.a, r4.a               // 1/ view vector mag squared 
mul  r4, t4, r4.a             // normalized view vector V 
 
// reflection vector for env map 
mul r2.rgb, r0.x, t1           
mad r2.rgb, r0.y, t2, r2 
mad r2.rgb, r0.z, t3, r2      // transform bump map normal into world space 
dp3  r2.a, r2, r2             // bump mag squared 
rsq  r2.a, r2.a               // 1 / view vector mag squared 
mul  r2.rgb, r2, r2.a         // normalized view vector bump 
 
dp3_sat r2.a, r2, r4          // N ·V             n

mul r3, r2, c0.w              // 2N  n
mad r1.rgb, r2.a, r3, -r4     // Rn = 2Nn(Nn·V)-V  (non sparkle reflection vector) 
 
// sparkles for color map 
mul r10.rgb, r6.x, t1           
mad r10.rgb, r6.y, t2, r10 
mad r10.rgb, r6.z, t3, r10    // transform bump map normal into world space 
dp3  r10.a, r10, r10          // bump mag squared 
rsq  r10.a, r10.a             // 1 / view vector mag squared 
mul  r10.rgb, r10, r10.a      // normalized view vector bump 
 
dp3_sat r6.a, r10, r4         // Ns·V             
 
// sparkles for env map 
mul r10.rgb, r7.x, t1           
mad r10.rgb, r7.y, t2, r2 
mad r10.rgb, r7.z, t3, r2     // transform bump map normal into world space 
 
dp3  r10.a, r10, r10          // bump mag squared 
rsq  r10.a, r10.a             // 1 / view vector mag squared 
mul  r10.rgb, r10, r10.a      // normalized view vector bump 
 
dp3_sat r7.a, r10, r4         // Ns.V             
 
texldb r0, r1, s2             // fetch from env map 
 
mul r0.rgb, r0, r0.a          // RGBScale HDR expansion 
 
mov_sat r3, r0 
dp3 r3, r3, c3.w              // scale env map intensisty for trim (use dp3 to add channels together) 
                              // grayscale conversion is a trick to make trim seem blacker 
 
mul r0.rgb, r0, c2.r          // HDR brightening for painted regions 
 
mov r4.a, r6.a 
mul r4.rgb, r4.a, c5          // (Ns·V) * Car Color 0 
mul r4.a, r4.a, r4.a 
mad r4.rgb, r4.a, c6, r4      // (Ns·V)2 * Car Color 1 
mul r4.a, r4.a, r4.a 
mad r4.rgb, r4.a, c7, r4      // (Ns·V)4 * Car Color 2 
pow r4.a, r7.a, c4.b 
 
mad r4.rgb, r4.a, c8, r4      // (Nss.V)16 * sparkle color 
 
mad r1.a, r2.a, c2.z, c2.w    //  1.0 - 0.5 * N·V 
mad r6.rgb, r0, r1.a, r4      // env map * fresnel + N·V * Car Color 
 
lrp r6.rgb, r5.r, r6, r3      // lerp between car paint, and trim effect 
sub r6.a, r0.a, c9.x           
mul r6.a, r6.a, c9.y 
 
mov oC0, r6 
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Car Paint – (a) Two-tone albedo, (b) microflake, (c) clearcoat and (d) all layers 
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Image-Space Outlining 
 

In Non-Photorealistic Rendering (NPR), outlines at object silhouettes, shadow edges and texture 

boundaries are important visual cues which have previously been difficult to generate in real-time.  In 

the SIGGRAPH 2002 sketch Real-Time Image-Space Outlining for Non-Photorealistic Rendering, we 

present an image-space technique which uses pixel shading hardware to generate these three classes of 

outlines in real time.  In all three cases, we render alternate representations of the desired scene into 

texture maps which are subsequently processed by pixel shaders to find discontinuities corresponding to 

outlines.  The outlines are then composited with the shaded scene. 

 

Outlining Silhouettes and Creases 

 

For the cases of silhouette and crease outlining, we render the full scene’s world-space normals 

and eye-space depths into an RGBA (nxworld, nyworld, nzworld, deptheye) texture using a vertex shader to 

populate the color channels [Decaudin1996; Saito and Takahashi 1990]. 

 

       
Normals and Depths of Still Life Scene 

 

This texture is subsequently processed using a discontinuity filter implemented as a pixel shader 

and composited over the shaded image. 
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Edges from Normals and Depths Shown Independently 

 

With this technique, creases and silhouettes both produce discontinuities in the image.  Note that 

we are not processing the contents of the depth buffer, but just happen to be generating a texture channel 

that has a semantic meaning that is the same as the depth buffer. 

 

 

Outlining Shadows 

 

To outline shadow edges, we employ the same renderable texture and image filtering technique 

used for silhouettes and creases above.  In the case of shadows, we use geometric shadow volumes and 

the stencil buffer to flag pixels which are in shadow with respect to a single light source.  For these 

pixels, we negate the world-space normal before it is written to the renderable texture.  This creates 

additional discontinuities in the {nxworld, nyworld, nzworld, deptheye} image which align with the shadow 

boundaries as shown below.  Multiple lights can be handled with multiple {nxworld, nyworld, nzworld, 

deptheye} images and composited with the shaded image. 
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Normals and Depths Negated in Shadowed Pixels 

 

Outlining Texture Boundaries 

 

 Texture boundaries lie between areas of an object which are textured differently but which do 

not generate a geometric discontinuity.  To handle this case, we use a technique similar to priority 

shadow buffers [Hourcade 85].  The regions of different texture are colored with IDs which are suitably 

different from adjoining regions as shown below. 

 

       
Region IDs and resulting discontinuities 

 

This creates a discontinuity in the ID image.  We have found that applying an ID map of 

insufficient resolution can lead to edge detection issues due to filtering of the ID texture.  Specifically, 
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extreme magnification and bilinear filtering of an ID texture can lead to poor detection of the texture 

boundary edges.  To combat this, we have used relatively large textures with linear-mip-nearest 

filtering. 

 

Enhancing Outlines with Morphology 

 

To further allow us to customize the look of a scene, we can choose to dilate or erode the edge 

image prior to compositing it with the shaded scene.  This is done with dilation or erosion pixel shaders 

[Mitchell 02]. 

 

       
Original thin edges and the application of a dilation operator to thicken them 

 

Optimization 

 

It is possible to reduce the cost of compositing the edge images with the shaded scene using 

alpha testing to mask out non-edge pixels.  Since there are typically a large number of non-edge pixels 

in a scene, as seen in the edge images above, this can be a significant memory bandwidth savings.  This 

optimization can also be applied when dilating the edge images.  Additionally, the ability to 

simultaneously output separate colors to multiple render targets enables us to optimize the initial 

rendering of the G-Buffer data.  For example, we could output a scene’s world-space normal vectors to 

one RGBA buffer while simultaneously outputting scalar screen-space depths to a 32-bit floating point 

buffer and RGBA IDs to a third buffer.  These three buffers can be subsequently post-processed to 

extract edges that can be composited with a shaded image. 
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Pixel Shader Code 

 

With DirectX® 9 2.0 pixel shaders, we can sample and filter the the normal, depth and texture 

ID images in one pass as shown below. 

 
ps.2.0 
def    c0,  0.0f, 0.80f, 0, 0          // normal thresholds  
def    c3,  0, .5, 1, 2 
def    c8,  0.0f, 0.0f, -0.01f, 0.0f   // Depth thresholds 
def    c9,  0.0f, -0.25f, 0.25f, 1.0f 
def    c12, 0.0f, 0.01f, 0.0f, 0.0f    // TexID Thresholds 
dcl_2d s0 
dcl_2d s1 
dcl    t0 
dcl    t1 
dcl    t2 
dcl    t3 
dcl    t4 
 
// Sample the map five times 
texld r0, t0, s0 // Center Tap 
texld r1, t1, s0 // Down/Right 
texld r2, t2, s0 // Down/Left 
texld r3, t3, s0 // Up/Left 
texld r4, t4, s0 // Up/Right 
 
// NORMALS 
mad r0.xyz, r0, c3.w, -c3.z 
mad r1.xyz, r1, c3.w, -c3.z 
mad r2.xyz, r2, c3.w, -c3.z 
mad r3.xyz, r3, c3.w, -c3.z 
mad r4.xyz, r4, c3.w, -c3.z  
 
// Take dot products with center (Signed result -1 to 1) 
dp3 r5.r, r0, r1           
dp3 r5.g, r0, r2 
dp3 r5.b, r0, r3 
dp3 r5.a, r0, r4 
 
// Subtract threshold 
sub r5, r5, c0.g 
 
// Make black/white based on threshold 
cmp r5, r5, c1.g, c1.r 
 
// detect any 1's 
dp4_sat r11, r5, c3.z 
mad_sat r11, r11, c1.b, c1.w // Scale and bias result 
 
// Z 
add r10.r, r0.a, -r1.a     // Take four deltas 
add r10.g, r0.a, -r2.a 
add r10.b, r0.a, -r3.a 
add r10.a, r0.a, -r4.a 
 
cmp r10, r10, r10, -r10      // Take absolute value 
add r10, r10, c8.b           // Subtract threshold 
cmp r10, r10, c1.r, c1.g     // Make black/white 
dp4_sat r10, r10, c3.z       // Sum up detected pixels 
mad_sat r10, r10, c1.b, c1.w // Scale and bias result 
mul r11, r11, r10            // Combine with previous 
 
// TexIDs 
texld r0, t0, s1 // Center Tap 
texld r1, t1, s1 // Down/Right 
texld r2, t2, s1 // Down/Left 
texld r3, t3, s1 // Up/Left 
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texld r4, t4, s1 // Up/Right 
 
// Get differences in color 
sub r1.rgb, r0, r1 
sub r2.rgb, r0, r2 
sub r3.rgb, r0, r3 
sub r4.rgb, r0, r4 
 
// Calculate magnitude of color differences 
dp3 r1.r, r1, c3.z 
dp3 r1.g, r2, c3.z 
dp3 r1.b, r3, c3.z 
dp3 r1.a, r4, c3.z 
 
cmp r1, r1, r1, -r1          // Take absolute values 
sub r1, r1, c12.g            // Subtract threshold 
cmp r1, r1, c1.r, c1.g       // Make black/white 
dp4_sat r10, r1, c3.z        // Total up edges 
mad_sat r10, r10, c1.b, c1.w // Scale and bias result 
mul r11, r10, r11            // Combine with previous 
 
// Output 
mov oC0, r11 

 

 

Conclusion 
In summary, we have outlined the shading capabilities of the new RADEON™ 9700 graphics 

processor and illustrated its power with a series of examples.  After a brief overview of the vertex and 

pixel shading programming models on the RADEON™ 9700, we have presented a detailed description 

of a variety of shaders including the required shiny bumpy, Homomorphic BRDF and procedural wood 

shaders.  In addition to these compulsory shaders, we have presented a discussion of high dynamic range 

rendering, motion blur, two-tone paint and image-space cartoon outlining shaders. 
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