
SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

RADEON™ 9700 Shading

Jason L. Mitchell
JasonM@ati.com

3D Application Research Group Lead
ATI Research

Introduction

In this supplement to Chapter 3 in the bound course notes, we will outline the shading

capabilities of the new RADEON™ 9700 graphics processor and illustrate its power with a series of

examples. After a brief overview of vertex shading on the RADEON™ 9700, we will spend the bulk of

the time on the fragment (aka pixel) shader programming model. For much of this chapter, we will use

Direct3D® syntax due to its brevity and readability, but all of this functionality (as shown in the section

on homomorphic factorization of BRDFs) is available through multivendor and ATI-developed OpenGL

extensions.

RADEON™ 9700 Vertex Shaders

The vertex shading model in the RADEON™ 9700 has advanced beyond the programming

model found in previous graphics processors such as the RADEON™ 8500 by adding constant-based

flow control capabilities. The motivation for this extension to the earlier programming models is to cut

down on the number of shaders that must be created and managed by application developers. In

previous vertex shader programming models such as the one found in DirectX® 8.1, developers

generally had to create and use large numbers of shaders from fragments of shader code. This was

necessary to handle the large numbers of permutations of drawing state (i.e. with/without environment

mapping, with/without skinning, different numbers of and types of lights etc). The vertex shading

model found in the RADEON™ 9700 enables developers to create a much smaller set of domain-

specific über shaders which can contain constant-based loops, subroutines and branches to manage the

permutation problem.

3.1 - 1

mailto:JasonM@ati.com
http://www.ati.com/developer/SIGGRAPH02/ATIHardwareShading_2002_Chapter3.pdf

Chapter 3.1 - RADEON™ 9700 Shading

Vertex Shader Assembly Language

Like the vertex shading model in the previous generation of graphics processors, the

RADEON™ 9700 can read from a bank of 4D float vectors as well as the input vertex components. A

bank of read/write temps is available for intermediate computations and a bank of write-only output

registers define the output from the vertex shader. Specific register counts for the RADEON™ 9700 are

listed below.

Type Name Count

Float Constant c[n] 256 read-only vectors
Temporary rn 12 read/write vectors
Input vn 16 read-only vectors

RADEON™ 9700 ALU Register Counts

 In addition to the ALU-related inputs and temps above, the RADEON™ 9700 supports a set of

constants and a counter to control the flow of execution as shown below.

Type Name Count

Integer Constant In 16 read-only vectors
Address A 1 read/write vector
Loop Counter aL 1 scalar
Boolean Constant B 16 read-only bits

RADEON™ 9700 Flow Control Register Counts

 These constants are set through API calls and persist until set again. In this way, an application

can program the control flow by setting a shader once and updating a few flow-control constants as

appropriate. A vertex shader on the RADEON™ 9700 can be up to 256 instructions long, though more

instructions than this may be executed due to looping, subroutines etc. The ALU instruction set

supports the usual functionality such as ADD, DP3, DP4, EXP, FRAC, LOG, MAD, MAX, MIN,

MOV, MUL, RCP, RSQ, SGE (set greater than or equal to) and SLT (set less than). The control flow

instructions include CALL, LOOP, ENDLOOP, JUMP, JNZ, LABEL, REPEAT, ENDREPEAT and

RETURN.

3.1 - 2

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

RADEON™ 9700 Pixel Shaders: First with Floating Point

The pixel shading model in the RADEON™ 9700 has also made a large step forward from

previous generations, particularly due to the leap from fixed point internal computations to floating

point. The new model goes beyond the models found in previous graphics processors such as the

RADEON™ 8500 by adding support for floating point, an instruction set appropriate for per-pixel

floating point operations and significantly greater program length.

Type Name Count
Vertex Color vn 2 read-only vectors
Temporary rn 12 read/write vectors
Constant cn 32 read-only vectors
Sampler sn 16 read-only
Texture Coordinate tn 8 read-only vectors

RADEON™ 9700 Pixel Shader Registers

 These inputs and temporary registers may be operated on by a pixel shader with up to 64 ALU

instructions and 32 texture instructions. The ALU instruction set has been extended to include

instructions appropriate to floating point data such as reciprocal and reciprocal square root. The ALU

instruction set is made up of instructions such as ADD, MOV, MUL, MAD, DP3, DP4, FRAC, RCP,

RSQ, EXP, LOG and CMP.

 The texture instructions of the RADEON™ 9700 are used to sample data from texture maps and

to conditionally kill pixels altogether. The texture loading instructions include the plain TEXLD

instruction, the projective TEXLDP instruction and the TEXLDBIAS instruction. The TEXLDBIAS

instruction can be used to apply a per-pixel LOD bias to any texture map access. This can be used for a

wide variety of applications including simulation of rough specular surfaces and general blurriness. We

will show examples of this in the motion blur and car paint shaders later in these notes. The TEXKILL

instruction can be used to conditionally kill pixels based on the signs of register components.

3.1 - 3

Chapter 3.1 - RADEON™ 9700 Shading

Samplers and Texture Coordinates

 In the pixel shader programming model of the RADEON™ 9700, samplers and texture

coordinates are completely decoupled. Texture coordinates are iterated across polygons and may be

used to sample data through a sampler. At any one time, a given sampler is associated with a specific

texture map in memory as well as a set of filtering state and texture coordinate clamping state. The

RADEON™ 9700 can iterate up to 8 4D texture coordinates and has 16 samplers. Naturally, it is

possible to sample from a single sampler multiple times in a given shader using different texture

coordinates. This is common when performing image processing operations as we will show later in the

High Dynamic Range bloom and image space outlining examples.

Pixel Shader Outputs

The pixel shading unit of the RADEON™ 9700 can output up to four colors to different render

targets. The ability to output to multiple render targets simultaneously allows multiple intermediate

values to be saved out between rendering passes and allows for implementation of G-buffer techniques

[Saito and Takahashi 1990]. An image-space outlining technique, as described by Saito and Takahashi,

using multiple simultaneous pixel shader outputs is shown later in these notes and in the SIGGRAPH

2002 sketch Real-Time Image-Space Outlining for Non-Photorealistic Rendering.

Now that we’ve given a brief introduction to the shader programming models, we’ll discuss the

common example shaders used by all presenters in this course: Bumped Cubic Environment Mapping,

McCool’s Homomorphic Factorization of BRDFs and Procedural Wood. Subsequently, we’ll present

additional shaders including high-dynamic range rendering, motion blur, image space outlining and two-

tone car paint in order to illustrate usage of many of the new aspects of the RADEON™ 9700 pixel

shader programming model.

The Common Example Shaders

 All of the presenters in this course have been asked to implement a set of common example

shaders to aid in understanding the differences between the programming models. In this section, we

3.1 - 4

http://www.ati.com/developer/SIGGRAPH02/SIGGRAPH2002_Sketch-Mitchell.pdf

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

will discuss our implementations of the common shaders using DirectX® 8.1’s ps.1.4 programming

model, the ATI_fragment_shader model and DirectX® 9’s ps.2.0 programming model.

Bumped Cubic Environment Mapping

Cubic environment mapping has become a common environment mapping technique for

reflective objects. Specifying a normal per-pixel in order to apply local detail or an Appearance

Preserving Simplification technique [Cohen et al 1998] is becoming increasingly popular, even in

conjunction with cubic environment mapping. In fact, the two-tone layered car paint example shown

later in these notes uses a high-precision normal map derived from appearance preserving simplification.

In this first common example shader, however, we will use a simple model and a basic ps.1.4 shader

which does cubic environment mapping based on per-pixel normals from a normal map. A reflection

vector is calculated per-pixel and is used to access a specular cubic environment map. This shader,

introduced last year in the ATI Treasure Chest Demo, also does diffuse cube mapping and combines this

with the specular environment map based on a per-pixel Fresnel term in one rendering pass [Brennan

02]. As it turns out, these additional effects basically come for free when implementing bumped cubic

environment mapping, particularly in the RISC pixel shading models found in the RADEON™ 8000

and 9000 series GPUs.

The fundamental operation performed by this shader is transformation of a normal from tangent

space into the space of the cube map to be sampled (world space, say). This operation can be performed

in ps.1.4 with a series of 3 dot products with write masks to perform the 3D rotation which gives us the

correct normal N. Subsequently, the interpolated eye vector E is reflected through this vector using the

typical reflection operation:

EENNR +⋅=)(2

or if the normal is not of unit length:

)()(2 NNEENNR ⋅+⋅=

The reflection vector, R, is used to do a dependent read from a cubic environment map.

Additionally, due to the RISC nature of ps.1.4, we can set aside the intermediate result, N, and use it to

do a dependent read from a diffuse cube map. It is also possible to sample several other maps including

3.1 - 5

http://www.cs.unc.edu/~geom/APS/APS.pdf
http://www.cs.unc.edu/~geom/APS/APS.pdf
http://www.ati.com/developer/Treasurechest.html

Chapter 3.1 - RADEON™ 9700 Shading

a base texture map and a colored gloss map. These terms plus a per-pixel Fresnel term can easily be

composited together in one pass as shown in [Brennan 02].

A simple pixel shader which does only the diffuse and specular dependent cube map lookups is

shown below.

 ps.1.4
 def c0, 1,1,1,1

 texld r0, t0 ; Look up normal map
 texcrd r1.xyz, t4 ; Eye vector
 texcrd r4.xyz, t1 ; 1st row of environment matrix
 texcrd r2.xyz, t2 ; 2st row of environment matrix
 texcrd r3.xyz, t3 ; 3rd row of environment matrix

 dp3 r4.x, r4, r0_bx2 ; N.x = 1st row of matrix multiply
 dp3 r4.y, r2, r0_bx2 ; N.y = 2nd row of matrix multiply
 dp3 r4.z, r3, r0_bx2 ; N.z = 3rd row of matrix multiply
 dp3_x2 r3.xyz, r4, r1 ; 2(N.Eye)
 mul r3.xyz, r4, r3 ; 2N(N.Eye)
 dp3 r2.xyz, r4, r4 ; N.N
 mad r2.xyz, -r1, r2, r3 ; 2N(N.Eye) - Eye(N.N)

 phase

 texld r2, r2 ; Sample cubic reflection map
 texld r3, t0 ; Sample base map with gloss in alpha
 texld r4, r4 ; Sample cubic diffuse map

 mul r1.rgb, r3.a, r2 ; Specular = Gloss * Reflection
 mad r0.rgb, r3, r4, r1 ; Base*Diffuse + Specular
+mov r0.a, c0.a ; Put 1.0 in alpha

3.1 - 6

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

Homomorphic Factorization BRDF
 The second of the common example shaders is based upon techniques outlined in McCool et al’s

Homomorphic Factorization of BRDFs for High-Performance Rendering from SIGGRAPH 2001. On

modern GPUs like the RADEON™ 8500 or RADEON™ 9700, the actual pixel shader used in this

technique is very simple to execute in one pass. For most of the materials rendered by McCool’s sample

application, the equation to be evaluated is one of the following:

1. (((diffuse * tex0) * scale1) * tex1 * scale2) * tex2
2. (((diffuse * tex0) * scale1) * tex1 * scale2) * tex2 + tex3
3. (((diffuse * tex0) * scale1) * tex1 * scale2) * tex2) * tex3

Using OpenGL ATI_fragment_shader notation, these equations can easily be evaluated:

glBeginFragmentShaderATI();

glSampleMapATI (GL_REG_0_ATI, GL_TEXTURE0_ARB, GL_SWIZZLE_STR_ATI); // Sample maps
glSampleMapATI (GL_REG_1_ATI, GL_TEXTURE1_ARB, GL_SWIZZLE_STR_ATI);
glSampleMapATI (GL_REG_2_ATI, GL_TEXTURE2_ARB, GL_SWIZZLE_STR_ATI);

if (param == PARAM_OHI_H) // only sample the specular map if necessary
{
 if (sg_tex3Type == GL_TEXTURE_CUBE_MAP_ARB) {
 glSampleMapATI (GL_REG_3_ATI, GL_TEXTURE3_ARB, GL_SWIZZLE_STR_ATI); }
 else {
 glSampleMapATI (GL_REG_3_ATI, GL_TEXTURE3_ARB, GL_SWIZZLE_STQ_ATI); }
}

// r0 = diffuse * tex0 * scale1
glColorFragmentOp2ATI (GL_MUL_ATI, GL_REG_0_ATI, GL_NONE, scale1,
 GL_PRIMARY_COLOR_EXT, GL_NONE, GL_NONE,
 GL_REG_0_ATI, GL_NONE, GL_NONE);

// r0 = (diffuse * tex0 * scale1) * tex1 * scale2
glColorFragmentOp2ATI (GL_MUL_ATI, GL_REG_0_ATI, GL_NONE, scale2,
 GL_REG_1_ATI, GL_NONE, GL_NONE,
 GL_REG_0_ATI, GL_NONE, GL_NONE);

if (param == PARAM_OHI_H) // do a MAD if specular map is used
{
 // r0 = ((diffuse * tex0 * scale1) * tex1 * scale2) * tex2 + tex3
 glColorFragmentOp3ATI (GL_MAD_ATI, GL_REG_0_ATI, GL_NONE, GL_NONE,
 GL_REG_0_ATI, GL_NONE, GL_NONE,
 GL_REG_2_ATI, GL_NONE, GL_NONE,
 GL_REG_3_ATI, GL_NONE, GL_NONE);
} else{
 // r0 = ((diffuse * tex0 * scale1) * tex1 * scale2) * tex2
 glColorFragmentOp2ATI (GL_MUL_ATI, GL_REG_0_ATI, GL_NONE, GL_NONE,
 GL_REG_0_ATI, GL_NONE, GL_NONE,
 GL_REG_2_ATI, GL_NONE, GL_NONE);}
glEndFragmentShaderATI();

3.1 - 7

http://www.cgl.uwaterloo.ca/Projects/rendering/Papers/homomorphic.pdf
http://www.cgl.uwaterloo.ca/Projects/rendering/Papers/
http://www.cgl.uwaterloo.ca/Projects/rendering/Papers/

Chapter 3.1 - RADEON™ 9700 Shading

Parameterized Volumetric Wood

Procedural generation of texture patterns is a popular technique for a

variety of reasons including reduced storage space and customizability through

intuitive parameters. A seminal example of this is the venerable wood shader

from the RenderMan Companion.

 In this section, we present a shader which procedurally generates wood

in an attempt to mimic the real wood samples running down the left side of the

page. The shader is based on the parametrized wood shader in Chapter 12.4 of

Advanced RenderMan by Apodaca and Gritz.

Non-real-time Gumbos from Advanced RenderMan

The real-time version of this shader uses a single 128×128×128

luminance-only 3D noise texture and one 1D function texture to evaluate a

pulse-train composed of smoothstep() functions, for a total of around 2 MB of

texture memory. Of course, the power of this approach is that it’s parametrized

so that a variety of woods can be generated by tweaking a small number of

intuitive input parameters to a single shader. Also, the sample application used

here has been developed so that an artist can interactively position the geometry

3.1 - 8

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

anyplace in shader space (i.e. at any position in the virtual log) in order to obtain a particular look. The

disadvantage of this wood implementation is the relatively high computational cost of executing the

shader. The input parameters to the shader are two wood colors (Clightwood and Cdarkwood), ring frequency

(freq), noise amplitude (amp), trunk wobble frequency, trunk wobble amplitude, specular exponent scale

and specular exponent bias.

 Computation occurs in shader space and a pixel’s position in this space is denoted as Pshade.

This allows us to position the volumetric wood relative to the object by transforming Pshade in the vertex

shader. This is a similar technique to the per-pixel distance attenuation used in the RADEON™ 8500

Treasure Chest Demo which procedurally computes distance attenuation from the light space position

interpolated across polygons [Vlachos 02]. In fact, for sampling noise into this wood shader, we will

interpolate five 3D positions: Pshade and four simple shifts and scales of Pshade. This allows us to sample

the same 3D scalar noise texture multiple times to get vector noise whose channels are reasonably

uncorrelated.

Basic Concentric Rings

 We will begin with a simple shader which defines cylindrical bands around the shader space z

axis. The intermediate value r is computed as follows:

freqPPr
yx shadeshade *22 +=

 This gives us the distance from the shader space z axis which is scaled by freq. We will use r as

a texture coordinate into a 1D luminance texture which defines the shape of each ring as it radiates out

from the shader space z axis. This 1D luminance texture is a smooth pulse train composed of

smoothstep() functions which has been tuned to mimic the way that colors mix in wood. A single

smooth pulse is shown below:

3.1 - 9

Chapter 3.1 - RADEON™ 9700 Shading

Smooth Pulse Used to Blend Wood Colors

 Using the luminance that we get back from the smooth pulse function texture shown above as a

blend factor between Clightwood and Cdarkwood gives us the following effect on the familiar Gumbo model.

Gumbo with procedural concentric rings

3.1 - 10

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

So far, our ps.2.0 shader code looks like the following

ps.2.0

def c0, 2.0f, -1.0f, 0.5f, 0.5f // scale, bias, half, X
def c1, 1.0f, 1.0f, 0.1f, 0.0f // X, X, 0.1, zero
// c2: xyz == Light Wood Color, w == ringFreq
// c3: xyz == Dark Wood Color

dcl t0.xyzw // xyz == Pshade (shader-space position), w == X

dcl_2d s1 // 1D smooth step function

dp2add r0, t0, t0, c1.w // x2 + y2 + 0
rsq r0, r0.x // 1/sqrt(x2 + y2)
rcp r0, r0.x // sqrt(x2 + y2)
mul r0, r0, c2.w // sqrt(x2 + y2) * freq

texld r0, r0, s1 // Sample from 1D pulse train texture

mov r1, c3
lrp r2, r0.x, c2, r1 // Blend between light and dark wood colors

mov oC0, r2

The final vertex shader, which generates the inputs to all of the wood pixel shaders is shown

below.

dcl_position v0
dcl_normal v3

def c40, 0.0f, 0.0f, 0.0f, 0.0f

m4x4 oPos, v0, c[0] // Transform position to clip space

m4x4 r0, v0, c[17] // Transformed Pshade (using texture matrix 0)
mov oT0, r0
m4x4 oT1, v0, c[21] // Transformed Pshade (using texture matrix 1)
m4x4 oT2, v0, c[25] // Transformed Pshade (using texture matrix 2)

mov r1, c40
mul r1.x, r0.z, c29.x // {freq*Pshade.z, 0, 0, 0}
mov oT3, r1 // {freq*Pshade.z, 0, 0, 0} for 1D trunkWobble noise in X
mov r1, c40
mad r1.x, r0.z, c29.x, c29.y // {freq*Pshade.z + 0.5, 0, 0, 0}
mov oT4, r1 // {freq*Pshade.z + 0.5, 0, 0, 0} for 1D trunkWobble noise in Y

m4x4 oT6, v0, c[4] // Transform position to eye space
m4x4 oT7, v3, c[8] // Transform normal to eye space

Incorporating Noise

 The ring pattern that we’ve generated so far is obviously too regular for believable wood and

needs to be made more noisy. Since we do not yet have native noise hardware, we will use a texture to

look up the noise. In this example, we will sample a 3D texture which contains several octaves of

3.1 - 11

Chapter 3.1 - RADEON™ 9700 Shading

tilable signed scalar fractional Brownian motion noise. We will sample this map 3 times using shifted,

negated and slightly scaled values of Pshade to construct reasonably uncorrelated vector fractional

Brownian motion noise. This signed vector noise is added to Pshade prior to the computation of r above.

Vector fractional Brownian motion noise Gumbo with “noised up” rings

Incorporating this additional noise, our ps.2.0 shader code looks like the following

ps.2.0

def c0, 2.0f, -1.0f, 0.5f, 0.5f // scale, bias, half, X
def c1, 1.0f, 1.0f, 0.1f, 0.0f // X, X, 0.1, zero
// c2: xyz == Light Wood Color, w == ringFreq
// c3: xyz == Dark Wood Color, w == noise amplitude
// c4: xyz == L_eye, w == trunkWobbleAmplitude

dcl t0.xyzw // xyz == Pshade (shader-space position), w == X
dcl t1.xyzw // xyz == Perturbed Pshade, w == X
dcl t2.xyzw // xyz == Perturbed Pshade, w == X

dcl_volume s0 // Luminance-only Volume noise
dcl_2d s1 // 1D smooth step function

texld r3, t0, s0 // Sample dX from scalar noise at P shade
texld r4, t1, s0 // Sample dY from scalar noise at perturbed Pshade
texld r5, t2, s0 // Sample dZ from scalar noise at perturbed Pshade

mov r3.y, r4.x // Put dY in y
mov r3.z, r5.x // Put dZ in z
mad r3, r3, c0.x, c0.y // Put noise in -1..+1 range
mad r7, c3.w, r3, t0 // Scale by amplitude and add to Pshade to warp the domain
dp2add r0, r7, r7, c1.w // x2 + y2 + 0
rsq r0, r0.x // 1/sqrt(x2 + y2)
rcp r0, r0.x // sqrt(x2 + y2)
mul r0, r0, c2.w // sqrt(x2 + y2) * freq

texld r0, r0, s1 // Sample from 1D pulse train texture

mov r1, c3
lrp r2, r0.x, c2, r1 // Blend between light and dark wood colors
mov oC0, r2

3.1 - 12

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

Trunk Wobble

This level of noise is definitely an improvement, but the rings are still all centered around the z

axis. We can add noise to Pshade.x and Pshade.y as a function of z to cause the trunk to wobble as it varies

in z. This effect alone essentially causes a wobbly tree trunk as shown below.

Tree trunk without wobble and with wobble in x and y as a function of z

To incorporate noisy trunk wobble into this shader, we sample the volume noise map at two

different locations (which are functions of Pshade.z) along the y = z = 0 column of texels in our volume

noise map. These two scalar values are added to x and y in the pixel shader, causing the rings to wobble

as shown in the diagram above. The effect of this wobbling on our Gumbo dataset is shown below.

Gumbo with “noised up” rings and wobbly tree trunk

3.1 - 13

Chapter 3.1 - RADEON™ 9700 Shading

Incorporating the previous noise and the perturbations to make the trunk wobble, our ps.2.0

shader code looks like the following.

ps.2.0

def c0, 2.0f, -1.0f, 0.5f, 0.5f // scale, bias, half, X
def c1, 1.0f, 1.0f, 0.1f, 0.0f // X, X, 0.1, zero
// c2: xyz == Light Wood Color, w == ringFreq
// c3: xyz == Dark Wood Color, w == noise amplitude
// c4: xyz == L_eye, w == trunkWobbleAmplitude

dcl t0.xyzw // xyz == Pshade (shader-space position), w == X
dcl t1.xyzw // xyz == Perturbed Pshade, w == X
dcl t2.xyzw // xyz == Perturbed Pshade, w == X
dcl t3.xyzw // xyz == {Pshade.z, 0, 0}, w == X
dcl t4.xyzw // xyz == {Pshade.z + 0.5, 0, 0}, w == X

dcl_volume s0 // Luminance-only Volume noise
dcl_2d s1 // 1D smooth step function (blend factor in x, specular exponent in y, ...)

texld r3, t0, s0 // Sample dX from scalar volume noise texture at P shade
texld r4, t1, s0 // Sample dY from scalar volume noise texture at perturbed Pshade
texld r5, t2, s0 // Sample dZ from scalar volume noise texture at perturbed Pshade

texld r6, t3, s0 // Sample trunkWobble.x from scalar volume noise at {Pshade.z, 0, 0}
texld r7, t4, s0 // Sample trunkWobble.y from scalar volume noise at {Pshade.z + 0.5, 0, 0}

mov r3.y, r4.x // Put dY in y
mov r3.z, r5.x // Put dZ in z

mov r6.y, r7.x // Move to get {trunkWobble.x, trunkWobble.y, 0}
mad r6, r6, c0.x, c0.y // Put {trunkWobble.x, trunkWobble.y, 0} in -1..+1 range

mad r3, r3, c0.x, c0.y // Put noise in -1..+1 range
mad r7, c3.w, r3, t0 // Scale noise by amplitude and add to Pshade to warp the domain
mad r7, c4.w, r6, r7 // Scale {trunkWobble.x, trunkWobble.y, 0} by amplitude and add in

dp2add r0, r7, r7, c1.w // x2 + y2 + 0
rsq r0, r0.x // 1/sqrt(x2 + y2)
rcp r0, r0.x // sqrt(x2 + y2)
mul r0, r0, c2.w // sqrt(x2 + y2) * freq

texld r0, r0, s1 // Sample from 1D pulse train texture

mov r1, c3
lrp r2, r0.x, c2, r1 // Blend between light and dark wood colors

mov oC0, r2

At this point, we have procedurally generated the albedo of the wood in a 2.0 pixel shader. Next

we will Phong shade the surface using pixel shader instructions to compute L from the position of a

single light source and perform several renormalization operations along the way—operations that were

previously impossible to carry out in the pixel pipeline due to limited range and precision. With the

floating point pixel pipeline of the RADEON™ 9700, true Phong shading is now possible in real-time.

3.1 - 14

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

With the procedural albedo generation and Phong shading (where specular exponent is also a

function of the smoothstep function, giving different specular exponents to the different wood rings),

our final pixel shader looks like the following:

ps.2.0

def c0, 2.0f, -1.0f, 0.5f, 0.5f // scale, bias, half, X
def c1, 1.0f, 1.0f, 0.1f, 0.0f // X, X, 0.1, zero
// c2: xyz == Light Wood Color, w == ringFreq
// c3: xyz == Dark Wood Color, w == noise amplitude
// c4: xyz == L_eye, w == trunkWobbleAmplitude
// c5: {X, X, expScale, expBias}

dcl t0.xyzw // xyz == Pshade (shader-space position), w == X
dcl t1.xyzw // xyz == Perturbed Pshade, w == X
dcl t2.xyzw // xyz == Perturbed Pshade, w == X
dcl t3.xyzw // xyz == {Pshade.z, 0, 0}, w == X
dcl t4.xyzw // xyz == {Pshade.z + 0.5, 0, 0}, w == X
dcl t6.xyzw // xyz == P_eye, w == X
dcl t7.xyzw // xyz == N_eye, w == X

dcl_volume s0 // Luminance-only Volume noise
dcl_2d s1 // 1D smooth step function (blend factor in x, specular exponent in y, ...)

texld r3, t0, s0 // Sample dX from scalar volume noise texture at P shade
texld r4, t1, s0 // Sample dY from scalar volume noise texture at perturbed Pshade
texld r5, t2, s0 // Sample dZ from scalar volume noise texture at perturbed P shade
texld r6, t3, s0 // Sample trunkWobble.x from scalar volume noise at { Pshade.z, 0, 0}
texld r7, t4, s0 // Sample trunkWobble.y from scalar volume noise at { Pshade.z + 0.5, 0, 0}

mov r3.y, r4.x // Put dY in y
mov r3.z, r5.x // Put dZ in z
mov r6.y, r7.x // Move to get {trunkWobble.x, trunkWobble.y, 0}
mad r6, r6, c0.x, c0.y // Put {trunkWobble.x, trunkWobble.y, 0} in -1..+1 range
mad r3, r3, c0.x, c0.y // Put noise in -1..+1 range
mad r7, c3.w, r3, t0 // Scale noise by amplitude and add to Pshade to warp the domain
mad r7, c4.w, r6, r7 // Scale {trunkWobble.x, trunkWobble.y, 0} by amplitude and add in

dp2add r0, r7, r7, c1.w // x2 + y2 + 0
rsq r0, r0.x // 1/sqrt(x2 + y2)
rcp r0, r0.x // sqrt(x2 + y2)
mul r0, r0, c2.w // sqrt(x2 + y2) * freq

texld r0, r0, s1 // Sample from 1D pulse train texture

mov r1, c3
lrp r2, r0.x, c2, r1 // Blend between light and dark wood colors
sub r4, c4, t6 // Compute normalized vector from vertex to light in eye space (Leye)
dp3 r5.w, r4, r4 //
rsq r5.w, r5.w //
mul r4, r4, r5.w // L eye

dp3 r6.w, t7, t7 // Normalize the interpolated normal
rsq r6.w, r6.w //
mul r5, t7, r6.w // N eye

dp3 r3.w, t6, t6 // Compute normalized vector from the eye to the vertex
rsq r3.w, r3.w //
mul r3, -t6, r3.w // V eye

add r6, r3, r5 // Compute Eye-Space HalfAngle (Leye +Veye)/|L_eye+Veye|
dp3 r6.w, r6, r6
rsq r6.w, r6.w
mul r6, r6, r6.w // H eye

dp3_sat r6, r5, r6 // N·H
mad r0.z, r0.z, c5.z, c5.w // scale and bias wood ring pulse to specular exponent range
pow r6, r6.x, r0.z // (N·H)k
dp3 r5, r4, r5 // Non-clamped N·L
mad_sat r5, r5, c0.z, c0.z // "Half-Lambert" trick for more pleasing diffuse term
mul r6, r6, r0.y // Gloss the highlight with the ramp texture
mad r2, r5, r2, r6 // N·L * procedural albedo + specular
mov oC0, r2

3.1 - 15

Chapter 3.1 - RADEON™ 9700 Shading

 The final shader gives us the following result.

Final Shader on one Gumbo

Final Shader on test scene

3.1 - 16

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

Additional Shaders

 Now that we’ve covered the compulsory shaders for this course, I’ll introduce some additional

shaders to illustrate a variety of new applications enabled by the RADEON™ 9700. This diverse

collection of shaders includes several steps of the High Dynamic Range Rendering process, motion blur,

local reflections, a two-tone car paint model and image-space outlining.

High Dynamic Range Rendering

 With the extended range and precision of

the RADEON™ 9700, it is possible to do a

variety of rendering operations in High Dynamic

Range (HDR) space. In fact, we have

implemented Paul Debevec’s Rendering With

Natural Light animation in real-time to illustrate

the ability to do real-time image-based lighting in

HDR space. The block diagram to the right

shows the high-level approach to rendering that is

used in the real-time and non-real-time renderings

of the Rendering with Natural Light animation.

The bulk of these operations need to be performed

in High Dynamic Range Space in order to truly

represent the wide range of radiances present in a

real-world scene [Debevec et al 1998]. The

objects in the scene, illuminated with HDR

images, are first rendered into an HDR image of

the scene. A bloom filter is applied to the image

to give the image a soft look, simulating light

scattering in the eye or the optics viewing the

virtual scene. The blooms are added back to the HDR rendering of the scene. This sum is then

vignetted and tone mapped down to a displayable range.

3.1 - 17

http://www.debevec.org/RNL/
http://www.debevec.org/RNL/

Chapter 3.1 - RADEON™ 9700 Shading

HDR Implementation on RADEON™ 9700

 The image to the right is a

typical frame from the real-time

Rendering with Natural Light demo.

The first step in rendering a frame of

this animation is generation of the

planar reflection map for the table top.

The HDR planar reflection map is

rendered to a 16-16-16-16 texture.

Once we have the reflection map, the

objects are rendered into the scene,

using HDR diffuse, specular and rough

specular illumination maps as

appropriate for each material. The

table top is textured with the planar reflection map generated earlier in the frame. The local reflections

and refractions on the spheres in the scene are handled using a special shader which will be discussed

later in these notes.

Frame Postprocessing

 After the 16-16-16-16 HDR image of the scene is rendered, a set of three Gaussian filters

covering a region of 50×50 pixels are applied to the image. This is achieved in three steps since the

Gaussian is separable. The first step is downsizing the image to ¼ of its original size (½ in x and ½ in y).

Three Gaussians with σ=2, σ=6 and σ=14 are applied in two more steps. The first of these performs the

first pass of the separable blurs on the ¼ size image. It computes an appropriately weighted sum of a

column of 25 pixels centered on the current pixel and saves the results to a temporary buffer. This

temporary buffer is then processed to apply the filter in the horizontal direction. In this same pass, the

Gaussians are added back to the original image, tone mapped and vignetted to create the final image

which is rendered to an 8-8-8-8 surface that can be read by the DAC.

3.1 - 18

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

 The tone mapping process allows us to simulate different exposure levels by simply applying a

different curve to the rendered HDR image. Four examples are shown below.

High Dynamic Range scene at four different exposure levels

 All four of these images were generated by applying different tone-mapping curves to the same

real-time rendered HDR image.

3.1 - 19

Chapter 3.1 - RADEON™ 9700 Shading

Local Reflections and Refractions

 In the real-time Rendering with Natural Light demo, it is necessary to compute local and non-

local reflections when rendering the balls in the scene. This is done with two key techniques.

First, a separate cube map is stored for each of the 10 spheres in the scene. These cubemaps are

rendered once during a preprocessing step from the center of the corresponding sphere and contain a

mask channel which masks the local (other objects in the scene) and non-local (distant environment)

parts of the scene. This mask channel is used to isolate local and non-local contributions to the

illumination of each sphere as it is rendered into the HDR scene.

Second, some creative reflection and refraction calculations are done when computing the cube

map coordinates for the local environment map. For the bottom quarter of the sphere, surface normals

are used to index the cube map while pure reflection vectors are used on the top quarter. For the middle

section of the sphere, a blend between the normals and reflection vectors is used. This is necessary to

ensure that the spheres appear to be in contact with the pedestals upon which they are resting in the

scene. These non-standard vectors are used to access the local environment map while “standard”

3.1 - 20

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

reflection vectors are used to access the distant HDR light probe. The mask channel of the local

reflection cube map is used to select between the two cube maps. The pixel shader for the opaque

reflective (non-refractive) metal balls is shown below.

 ps.2.0
 dcl_cube s0
 dcl_cube s1
 dcl t0 // normal
 dcl t1 // view vector

 dp3 r2.a, t0, t0
 rsq r2.a, r2.a
 mul r2.rgb, t0, r2.a // normalized normal

 dp3 r3.a, t1, t1
 rsq r3.a, r3.a
 mul r3.rgb, t1, r3.a // normalized view vector

 dp3 r4.a, r2, r3 // N.V
 mul r4.rgb, r4.a, r2 // N(N.V)
 mad r4.rgb, r4, c0.w, -r3 // R = 2N(N.V)-V

 mad_sat r2.a, -r2.y, c4.r, c4.g // curve on sphere (y up)
 lrp r5, r2.a, r2, r4 // lerp between N and R

 texld r0, r4, s0
 texld r1, r5, s1

 mul r0.rgb, r0, r0.a // Decompress hdr env map
 mul r0.rgb, r0, c2.r // Brighten hdr env map (reflection)

 mul r1.a, r1.a, r1.a
 lrp r2.rgb, r1.a, r1, r0

 mul r0.rgb, r2, c1 // color hdr env map
 mov r0.a, r0.a
 mad r0, r0, c7.r, c7.g // attenuation and additive factor

 mov oC0, r0

Pixel shader for opaque reflective (non-refractive) metal balls

The transparent spheres in the scene use slightly different shaders which contain refractive terms.

Additionally, the rough specular spheres use a per-object LOD bias to sample from a blurrier

environment map as well as an image-based diffuse term generated from the original light probe in

HDRShop.

3.1 - 21

http://www.debevec.org/HDRShop/

Chapter 3.1 - RADEON™ 9700 Shading

Motion Blur on Balls in Real-Time Animusic Demo

 To demonstrate many

of the features of the

RADEON™ 9700, we

implemented a real-time

version of the Animusic Pipe

Dream Animation shown in the

SIGGRAPH 2001 Electronic

Theater. One simple but

powerful shader that we wrote

for this real-time demo is the

motion blur shader used on the

numerous flying balls in the

scene. Rather than draw the moving balls several times at different points in space and time as one

might do with an accumulation buffer [Haeberli and Akeley 1990], we chose to draw each ball once,

distorting its appearance to make it appear as if it were in motion during the frame “exposure.” This

technique is an extension to the approach taken by [Wloka and Zeleznik 1996]. The previous work

eliminates the obvious discrete renderings of the ball which would be inevitable in an accumulation

buffer approach, while our shader also accounts for blurring of the object and computing a more

accurate approximation to its contribution to the scene over time. To achieve the look we wanted, we

used a vertex shader and a pixel shader to distort both the shape and shading of the balls.

Distorting the Shape

In the diagram below, we show how the ball’s shape is distorted by the vertex shader in the

direction tangent to the path of motion at the time instant centered in the current finite shutter time.

Each ball is modeled as a “capsule” (two hemispheres with a connecting cylinder) which is aligned with

the direction of motion. The vertex shader stretches the ball tangent to the direction of motion as shown

below. The vertices of the front half of the capsule (those whose normals have a positive dot product

with the direction of motion) are pushed in the direction of motion and the vertices of the back half

capsule (those whose normals have a negative dot product with the direction of motion) are pulled in the

3.1 - 22

http://www.animusic.com/pipe-dream.html
http://www.animusic.com/pipe-dream.html

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

opposite direction. Naturally, the total amount of stretching is the amount of distance the ball moved

since the previous frame.

 The capsule geometry is stretched in the vertex shader as a function of distance traveled, d,

measured in ball diameter units. The vertex shader also computes a blurriness factor from 1 / (1 + d),

shown in the curve below. This factor is interpolated across the polygons and used by the pixel shader

to determine how much to blur the shading of the balls.

Blurriness factor as a function of distance traveled

3.1 - 23

Chapter 3.1 - RADEON™ 9700 Shading

 As you can see from the curve, if the ball hasn’t moved at all, the blurriness factor is one. The

blurriness factor falls asymptotically to zero from there. The relevant snippet of vertex shader code,

which computes the blurriness factor, is as follows.

 . . .

 // Calculate a 0 to 1 blurriness factor.
 mul r9.y, r9.x, c19.x // /= BallSize => Distance traveled in ball lengths.
 add r9.z, r9.y, c0.z // += 1 => coverage in ball lengths.
 rcp r9.z, r9.z // 1/(1+DistanceTraveled/BallSize) => Alpha calculated from speed
 sub r9.z, c0.z, r9.z // blur factor used for blurriness of ball
 mov oT0.w, r9.z // export blurriness
 . . .

Blurriness Computation from Motion Blur Vertex Shader

Distorting the Shading

In addition to merely stretching the capsule geometry along the tangent to the path of the ball’s

motion, the shading of the object is affected by the blurriness factor computed above. There are a

number of factors which contribute to the ball color including two specular highlights and an

environment map, all of which are blurred as a function of the ball’s motion during the frame. In the

case of the two specular highlights on each ball, the specular exponent and its intensity are lowered.

This serves to spread out the highlight and make it appear to be blurred in the direction of the ball’s

motion. In essence, the goal is to spread the energy radiating from the specular highlight among the

pixels that the specular highlight would move across during a finite frame exposure time. In the case of

the environment map, we use the texldb pixel shader instruction, which applies a per-pixel bias to

selectively sample the smaller mip levels. This blurs the environment map term.

 ps.2.0
 def c0, 0.0, 0.5, 1.0, 2 // common constants
 dcl t0.xyzw // Normal. Blurriness in alpha
 dcl t1.xyz // View vector
 dcl t2.xyz // Light vector 1
 dcl t3.xyz // Light vector 2
 dcl v0.rgb // ambient lighting
 dcl_cube s0 // environment map

 // Normalize normal
 dp3 r0.w, t0, t0 // Normal length squared
 rsq r0.w, r0.w // 1 / Normal length
 mul r0.xyz, t0, r0.w // Normalized normal

 // Do reflections
 dp3 r2.w, t1, r0 // V·N

3.1 - 24

 mul r2.w, r2.w, c0.w // 2V

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

 mad r1.xyz, r2.w, r0, -t1 // W=(2V·N)N-V reflected view vector
 dp3 r1.w, r1, r1 // length squared
 rsq r1.w, r1.w // 1 / Normal length
 mul r1.xyz, r1, r1.w // Normalized reflection

 // Do blur calculation
 mad_sat r2.x, -c0.w, t0.w, c0.w // Clamp(2-2*ext)
 mul_sat r2.y, c0.w, t0.w // Clamp(2*ext)
 dp3_sat r2.z, r0, t1 // N·V
 sub r2.z, c0.z, r2.z // 1-N·V
 mad r2.w, -r2.y, r2.z, c0.z // 1-Clamp(2*ext)*(1-N·V)
 mul r2.w, r2.w, r2.x // Clamp(2-2*ext) * Clamp(1-2*ext)*(1-N·V)

 // Blur texture
 mul r1.w, t0.w, c1.y // blurAmount * textureBlur
 texldb r5, r1, s0 // Sample reflections
 mad r6.rgb, r5, c2, v0 // Reflection * reflection color + ambient

 // Calc specular blur
 mul r3.x, c1.z, t0.w // Blur amount reduced specular exponent
 add r3.y, r3.x, c7.x // Add into base specular exp.
 max r4.z, r3.y, c0.z // Clamp to 1
 mul r3.w, t0.w, c1.w // Specular dimming.
 mad r3.w, -r3.w, c1.x, c1.x // SpecIntensity-SpecIntensity*specular dim.

 // Light 1
 dp3_sat r3.x, r1, t2 // R·L
 pow r3.y, r3.x, r4.z // R·Lk
 mul r3.z, r3.y, r3.w // Dim specular
 mul r7.rgb, c3, r3.z // *= LightColor * Falloff

 // Light 2
 dp3_sat r3.x, r1, t3 // R·L
 pow r3.y, r3.x, r4.z // R·Lk
 mul r3.z, r3.y, r3.w // Dim specular
 mad r7.rgb, c4, r3.z, r7 // *= LightColor * Falloff

 // Combine
 add r0.rgb, r6, r7 // Diffuse + Specular
 mov r0.a, r2.w // Copy blur to alpha
 mul r0.rgb, r0, r2.w // Premultiply Src * SrcAlpha

 mov oC0, r0 // Output

Motion Blurred Ball Pixel Shader

In the last few instructions of the pixel shader, the diffuse and specular components of

illumination are combined. Because the specular contribution can be greater than one, we perform part

of the frame-buffer compositing operation (Src * SrcAlpha) in the pixel shader before the colors are

clamped to the zero to one range. Each pixel is composited with the frame buffer with a src + srcAlpha

* Dest blend. Doing the Src * SrcAlpha premultiplication in the pixel shader gives a more accurate

result since it happens prior to pixel shader output color saturation.

Motion Blur on Strings in Real-Time Animusic Pipe Dream Demo

3.1 - 25

Chapter 3.1 - RADEON™ 9700 Shading

 The motion blur on the strings in the real-time Animusic Pipe Dream is considerably simpler

than it is for the balls, but the effect is still quite convincing. Essentially, the goal is to render a string

moving rapidly back and forth at a frequency much higher than the frame rate and the simulated finite

frame exposure time. For a given frame of our rendering, a moving string has a given amplitude. That

string is motion blurred by drawing two instances of it. One of the instances of the plucked string is

drawn opaque with both of the long sides of the string geometry bowed in the same direction. The

amount of bowing is equal to the amplitude of the string vibration during that frame. The other instance

of the string geometry is drawn semitransparent with the long sides of the string geometry bowed away

from each other, covering the full range of motion of the vibrating string for that frame. The

transparency of this second string instance is proportional to the amplitude. The effect of this motion

blur is shown below.

A Motion Blurred Ball and String from the Real-Time Animusic Pipe Dream Demo

3.1 - 26

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

Two-tone Layered Car Paint Model

 The next shader that

we’ll cover is an interesting

pixel shader effect

simulating two-tone car

paint. The car model

shown here has a relatively

modest number of

polygons, but uses a normal

map generated from an

appearance preserving

simplification algorithm

[Cohen et al 1998]. Due to the pixel shader operations performed and the subtle gradients across areas

such as the hood, a 16 bit per channel normal map is necessary.

Normal Map Decompression

The first step in this pixel shader is normal decompression. Since the normals are stored in

surface local coordinates (aka tangent space), we can assume that the z component of the normals will

be positive. Thus, we can store x and y in two channels of a 16-16 texture map and derive z in the pixel

shader from +sqrt (1 – x2 – y2). This gives us much higher precision than a traditional 8-8-8-8 normal

map (even 10 or 11 bits per channel is not enough for this particular shader) for the same memory

footprint.

Base Color

 The normal decompression described above is performed on a surface normal map which is

generated from an appearance preserving simplification process (N) and a high frequency normalized

vector noise map (Nn) which is repeated across the surface. These two normals are used to compute two

3.1 - 27

Chapter 3.1 - RADEON™ 9700 Shading

perturbed normals which are used simulate the two-toned nature of the paint as well as the microflake

suspended in an inner coat of the paint. These normals, Ns and Nss are computed as follows:

Ns = (aNn + bN) / |aNn + bN| , where a << b
Nss = (cNn + dN) / |cNn + dN| , where c = d

 The coefficients a, b, c and d above are constant input parameters to the pixel shader which

essentially determine the distributions of the perturbed normals which in turn determine the width of the

region in which the microflake is readily visible. These two normals are dotted with the view vector and

used as parameters in the following polynomial, which determines the color of the base coat and

strength of the microflake term:

c0(Ns·V) + c1(Ns·V)2 + c2(Ns·V)4 + c3(Nss·V)16

 Essentially, the first three terms of this polynomial perform the blend between the two tones of

the paint and the fourth adds an extra layer of sparkling from the microflake.

Clear Coat Paint Layer and Rough Specular Trim

The final step in rendering the painted areas of the car is inclusion of the clear coat through

addition of an environment map as shown below.

Two-tone, microflake, clear coat and final lighting on side rear-view mirror

3.1 - 28

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

 There is one interesting aspect of the clear coat term which the decision to store the environment

map in an RGBScale form to simulate high dynamic range in a low memory footprint. The alpha

channel of the texture, shown on the right below, represents 1/16th of the true range of the data while the

RGB, shown on the left below, represents the normalized color. In the pixel shader, the alpha channel

and RGB channels are multiplied together and multiplied by eight to reconstruct a cheap form of HDR

reflectance. This is multiplied by a subtle Fresnel term before being added to the lighting terms

described above.

RGB and Scale channels of top face of HDR cubic environment map

Trim areas of the car such as the black hatch area on the back and the grooves around the door

are separated out by monochrome base map. The monochrome map knocks out the metal shading for

those pixels of the car surface and also determines a per-pixel LOD bias to use when accessing the

environment map. This allows us to cheaply simulate more rough surfaces in trim areas. We also chose

to convert the color from the environment map to a luminance value in the pixel shader because we

liked the look. A rough-specular area is shown on the following page.

3.1 - 29

Chapter 3.1 - RADEON™ 9700 Shading

Rough specular on black hatch and other trim

 The full pixel shader for the car paint and trim is shown below.

PsConst 2 (8.0, 0.0, -0.5, 1.0) // hdr map boost, hdr_alpha_no_glow, fresnel scale, fresnel bias
PsConst 3 (-4.0, 4.0, 12.9, 0.50) // trim miplod scale, trim miplod bias, trim env scale, trim env bias
PsConst 4 (0.10, 1.00, 16.0, 0.0) // sparkle str (color), sparkle str (glistens), exp for shimmering, 0
PsConst 9 (0.500, 100.0, 0.0, 0.0)// hdr_alpha_no_glow, hdr_glow_boost

PsConst 5 (0.4, 0.0, 0.35, 0.0) // car color 0
PsConst 6 (0.6, 0.0, 0.00, 0.0) // car color 1
PsConst 7 (0.0, 0.35, -0.35, 0.0) // car color 2
PsConst 8 (0.5, 0.5, 0.0, 0.0) // car sparkle color

ps.2.0
def c0, 0.0, 0.5, 1.0, 2.0
def c1, 0.0, 0.0, 1.0, 0.0
dcl_2d s0 // base map
dcl_2d s1 // normal map
dcl_cube s2 // cube env map
dcl_2d s3 // sparkle map (color shift)
dcl_2d s4 // sparkle map (sparkles)

dcl t0 // tex coords
dcl t1 // tanx
dcl t2 // tany
dcl t3 // tanz
dcl t4 // view vector
dcl t5 // sparkle map tex coords

texld r0, t0, s1 // fetch from normal map
texld r5, t0, s0 // fetch from grayscale gloss map
texld r8, t5, s3 // fetch from sparkle map (color shift)
texld r9, t5, s4 // fetch from sparkle map (sparkles)

dp2add r0.a, r0, r0, -c0.z // 1 - X2 + Y2
rsq r0.a, r0.a // 1 / sqrt(1 - X2 + Y2)
rcp r0.b, r0.a // z = sqrt(1 - X2 + Y2)

mad r3, r8, c0.w, -c0.z // bx2 on sparkle map (color shift)

3.1 - 30

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

mad r6, r3, c4.r, r0 // hack to add sparkle map to normal map

mad r3, r9, c0.w, -c0.z // bx2 on sparkle map (sparkles)
mad r7, r3, c4.g, r0 // hack to add sparkle map to normal map

mad r1.a, r5.r, c3.x, c3.y // scale and bias for miplod bias based on alpha

dp3 r4.a, t4, t4 // view vector mag squared
rsq r4.a, r4.a // 1/ view vector mag squared
mul r4, t4, r4.a // normalized view vector V

// reflection vector for env map
mul r2.rgb, r0.x, t1
mad r2.rgb, r0.y, t2, r2
mad r2.rgb, r0.z, t3, r2 // transform bump map normal into world space
dp3 r2.a, r2, r2 // bump mag squared
rsq r2.a, r2.a // 1 / view vector mag squared
mul r2.rgb, r2, r2.a // normalized view vector bump

dp3_sat r2.a, r2, r4 // N ·V n

mul r3, r2, c0.w // 2N n
mad r1.rgb, r2.a, r3, -r4 // Rn = 2Nn(Nn·V)-V (non sparkle reflection vector)

// sparkles for color map
mul r10.rgb, r6.x, t1
mad r10.rgb, r6.y, t2, r10
mad r10.rgb, r6.z, t3, r10 // transform bump map normal into world space
dp3 r10.a, r10, r10 // bump mag squared
rsq r10.a, r10.a // 1 / view vector mag squared
mul r10.rgb, r10, r10.a // normalized view vector bump

dp3_sat r6.a, r10, r4 // Ns·V

// sparkles for env map
mul r10.rgb, r7.x, t1
mad r10.rgb, r7.y, t2, r2
mad r10.rgb, r7.z, t3, r2 // transform bump map normal into world space

dp3 r10.a, r10, r10 // bump mag squared
rsq r10.a, r10.a // 1 / view vector mag squared
mul r10.rgb, r10, r10.a // normalized view vector bump

dp3_sat r7.a, r10, r4 // Ns.V

texldb r0, r1, s2 // fetch from env map

mul r0.rgb, r0, r0.a // RGBScale HDR expansion

mov_sat r3, r0
dp3 r3, r3, c3.w // scale env map intensisty for trim (use dp3 to add channels together)
 // grayscale conversion is a trick to make trim seem blacker

mul r0.rgb, r0, c2.r // HDR brightening for painted regions

mov r4.a, r6.a
mul r4.rgb, r4.a, c5 // (Ns·V) * Car Color 0
mul r4.a, r4.a, r4.a
mad r4.rgb, r4.a, c6, r4 // (Ns·V)2 * Car Color 1
mul r4.a, r4.a, r4.a
mad r4.rgb, r4.a, c7, r4 // (Ns·V)4 * Car Color 2
pow r4.a, r7.a, c4.b

mad r4.rgb, r4.a, c8, r4 // (Nss.V)16 * sparkle color

mad r1.a, r2.a, c2.z, c2.w // 1.0 - 0.5 * N·V
mad r6.rgb, r0, r1.a, r4 // env map * fresnel + N·V * Car Color

lrp r6.rgb, r5.r, r6, r3 // lerp between car paint, and trim effect
sub r6.a, r0.a, c9.x
mul r6.a, r6.a, c9.y

mov oC0, r6

3.1 - 31

Chapter 3.1 - RADEON™ 9700 Shading

Car Paint – (a) Two-tone albedo, (b) microflake, (c) clearcoat and (d) all layers

3.1 - 32

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

Image-Space Outlining

In Non-Photorealistic Rendering (NPR), outlines at object silhouettes, shadow edges and texture

boundaries are important visual cues which have previously been difficult to generate in real-time. In

the SIGGRAPH 2002 sketch Real-Time Image-Space Outlining for Non-Photorealistic Rendering, we

present an image-space technique which uses pixel shading hardware to generate these three classes of

outlines in real time. In all three cases, we render alternate representations of the desired scene into

texture maps which are subsequently processed by pixel shaders to find discontinuities corresponding to

outlines. The outlines are then composited with the shaded scene.

Outlining Silhouettes and Creases

For the cases of silhouette and crease outlining, we render the full scene’s world-space normals

and eye-space depths into an RGBA (nxworld, nyworld, nzworld, deptheye) texture using a vertex shader to

populate the color channels [Decaudin1996; Saito and Takahashi 1990].

Normals and Depths of Still Life Scene

This texture is subsequently processed using a discontinuity filter implemented as a pixel shader

and composited over the shaded image.

3.1 - 33

http://www.ati.com/developer/SIGGRAPH02/SIGGRAPH2002_Sketch-Mitchell.pdf

Chapter 3.1 - RADEON™ 9700 Shading

Edges from Normals and Depths Shown Independently

With this technique, creases and silhouettes both produce discontinuities in the image. Note that

we are not processing the contents of the depth buffer, but just happen to be generating a texture channel

that has a semantic meaning that is the same as the depth buffer.

Outlining Shadows

To outline shadow edges, we employ the same renderable texture and image filtering technique

used for silhouettes and creases above. In the case of shadows, we use geometric shadow volumes and

the stencil buffer to flag pixels which are in shadow with respect to a single light source. For these

pixels, we negate the world-space normal before it is written to the renderable texture. This creates

additional discontinuities in the {nxworld, nyworld, nzworld, deptheye} image which align with the shadow

boundaries as shown below. Multiple lights can be handled with multiple {nxworld, nyworld, nzworld,

deptheye} images and composited with the shaded image.

3.1 - 34

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

Normals and Depths Negated in Shadowed Pixels

Outlining Texture Boundaries

 Texture boundaries lie between areas of an object which are textured differently but which do

not generate a geometric discontinuity. To handle this case, we use a technique similar to priority

shadow buffers [Hourcade 85]. The regions of different texture are colored with IDs which are suitably

different from adjoining regions as shown below.

Region IDs and resulting discontinuities

This creates a discontinuity in the ID image. We have found that applying an ID map of

insufficient resolution can lead to edge detection issues due to filtering of the ID texture. Specifically,

3.1 - 35

Chapter 3.1 - RADEON™ 9700 Shading

extreme magnification and bilinear filtering of an ID texture can lead to poor detection of the texture

boundary edges. To combat this, we have used relatively large textures with linear-mip-nearest

filtering.

Enhancing Outlines with Morphology

To further allow us to customize the look of a scene, we can choose to dilate or erode the edge

image prior to compositing it with the shaded scene. This is done with dilation or erosion pixel shaders

[Mitchell 02].

Original thin edges and the application of a dilation operator to thicken them

Optimization

It is possible to reduce the cost of compositing the edge images with the shaded scene using

alpha testing to mask out non-edge pixels. Since there are typically a large number of non-edge pixels

in a scene, as seen in the edge images above, this can be a significant memory bandwidth savings. This

optimization can also be applied when dilating the edge images. Additionally, the ability to

simultaneously output separate colors to multiple render targets enables us to optimize the initial

rendering of the G-Buffer data. For example, we could output a scene’s world-space normal vectors to

one RGBA buffer while simultaneously outputting scalar screen-space depths to a 32-bit floating point

buffer and RGBA IDs to a third buffer. These three buffers can be subsequently post-processed to

extract edges that can be composited with a shaded image.

3.1 - 36

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

Pixel Shader Code

With DirectX® 9 2.0 pixel shaders, we can sample and filter the the normal, depth and texture

ID images in one pass as shown below.

ps.2.0
def c0, 0.0f, 0.80f, 0, 0 // normal thresholds
def c3, 0, .5, 1, 2
def c8, 0.0f, 0.0f, -0.01f, 0.0f // Depth thresholds
def c9, 0.0f, -0.25f, 0.25f, 1.0f
def c12, 0.0f, 0.01f, 0.0f, 0.0f // TexID Thresholds
dcl_2d s0
dcl_2d s1
dcl t0
dcl t1
dcl t2
dcl t3
dcl t4

// Sample the map five times
texld r0, t0, s0 // Center Tap
texld r1, t1, s0 // Down/Right
texld r2, t2, s0 // Down/Left
texld r3, t3, s0 // Up/Left
texld r4, t4, s0 // Up/Right

// NORMALS
mad r0.xyz, r0, c3.w, -c3.z
mad r1.xyz, r1, c3.w, -c3.z
mad r2.xyz, r2, c3.w, -c3.z
mad r3.xyz, r3, c3.w, -c3.z
mad r4.xyz, r4, c3.w, -c3.z

// Take dot products with center (Signed result -1 to 1)
dp3 r5.r, r0, r1
dp3 r5.g, r0, r2
dp3 r5.b, r0, r3
dp3 r5.a, r0, r4

// Subtract threshold
sub r5, r5, c0.g

// Make black/white based on threshold
cmp r5, r5, c1.g, c1.r

// detect any 1's
dp4_sat r11, r5, c3.z
mad_sat r11, r11, c1.b, c1.w // Scale and bias result

// Z
add r10.r, r0.a, -r1.a // Take four deltas
add r10.g, r0.a, -r2.a
add r10.b, r0.a, -r3.a
add r10.a, r0.a, -r4.a

cmp r10, r10, r10, -r10 // Take absolute value
add r10, r10, c8.b // Subtract threshold
cmp r10, r10, c1.r, c1.g // Make black/white
dp4_sat r10, r10, c3.z // Sum up detected pixels
mad_sat r10, r10, c1.b, c1.w // Scale and bias result
mul r11, r11, r10 // Combine with previous

// TexIDs
texld r0, t0, s1 // Center Tap
texld r1, t1, s1 // Down/Right
texld r2, t2, s1 // Down/Left
texld r3, t3, s1 // Up/Left

3.1 - 37

Chapter 3.1 - RADEON™ 9700 Shading
texld r4, t4, s1 // Up/Right

// Get differences in color
sub r1.rgb, r0, r1
sub r2.rgb, r0, r2
sub r3.rgb, r0, r3
sub r4.rgb, r0, r4

// Calculate magnitude of color differences
dp3 r1.r, r1, c3.z
dp3 r1.g, r2, c3.z
dp3 r1.b, r3, c3.z
dp3 r1.a, r4, c3.z

cmp r1, r1, r1, -r1 // Take absolute values
sub r1, r1, c12.g // Subtract threshold
cmp r1, r1, c1.r, c1.g // Make black/white
dp4_sat r10, r1, c3.z // Total up edges
mad_sat r10, r10, c1.b, c1.w // Scale and bias result
mul r11, r10, r11 // Combine with previous

// Output
mov oC0, r11

Conclusion
In summary, we have outlined the shading capabilities of the new RADEON™ 9700 graphics

processor and illustrated its power with a series of examples. After a brief overview of the vertex and

pixel shading programming models on the RADEON™ 9700, we have presented a detailed description

of a variety of shaders including the required shiny bumpy, Homomorphic BRDF and procedural wood

shaders. In addition to these compulsory shaders, we have presented a discussion of high dynamic range

rendering, motion blur, two-tone paint and image-space cartoon outlining shaders.

Acknowledgments

Thanks to my colleagues at ATI for their valuable input, art and demo help, particularly John

Isidoro, Chris Brennan, Eli Turner, Scott LeBlanc, Alex Vlachos and Dave Gosselin. Thanks to Paul

Debevec and his team for the use of their HDR light probes and the Rendering with Natural Light

dataset. Thanks also to Wayne Lytle and the crew at Animusic for their help with the real-time version

of their Pipe Dream animation.

3.1 - 38

http://www.animusic.com/pipe-dream.html

SIGGRAPH 2002 - State of the Art in Hardware Shading Course Notes

3.1 - 39

References

• [Apodaca and Gritz 01] Anthony A. Apodaca and Larry Gritz, Advanced RenderMan:
Creating CGI for Motion Pictures, Morgan Kaufman, 2001

• [Brennan 02] Brennan, Chris. “Diffuse Cube Mapping.” In Direct3D ShaderX: Vertex and
Pixel Shader Tips and Tricks, Wolfgang Engel editor, Wordware

• [Cohen et al 98] Cohen, Jonathan, Marc Olano, and Dinesh Manocha. Appearance-
Preserving Simplfication. Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19-24,
1998). In Computer Graphics, Annual Conference Series, ACM SIGGRAPH, 1998.

• [Debevec et al 98] Debevec, Paul. Rendering Synthetic Objects Into Real Scenes: Bridging
Traditional and Image-Based Graphics With Global Illumination and High Dynamic Range
Photography, Proceedings of SIGGRAPH 98 pp. 189-198 (July 1998, Orlando, Florida).
See also: http://www.debevec.org

• [Decaudin 96] Decaudin, P.. Cartoon-looking rendering of 3D-scenes. Technical Report
INRIA 2919, Université de Technologie de Compiègne, France. 1996

• [Haeberli and Akeley 1990] Paul E. Haeberli and Kurt Akeley. The accumulation buffer:
Hardware support for high-quality rendering. SIGGRAPH 1990, pages 309-318, August
1990.

• [Hourcade 85] Hourcade, J. C. and Nicolas, A.. Algorithms for Antialiased Cast Shadows. In
Computer and Graphics, 9, 3, 259-265. 1985

• [Mitchell 02] Mitchell, J. L. 2002. Image Processing with Direct3D Pixel Shaders. In
Direct3D ShaderX: Vertex and Pixel Shader Tips and Tricks, Wolfgang Engel editor,
Wordware

• [Saito and Takahashi 90] Saito, T and Takahashi, T. Comprehensible Rendering of 3-D
Shapes. In Proceedings of SIGGRAPH 1990, ACM Press / ACM SIGGRAPH, New York.
197-206

• [Vlachos 02] Alex Vlachos, John Isidoro and Chris Oat “Textures as Lookup Tables for Per-
Pixel Lighting Computations” in Game Programming Gems III, 2002.

• [Wloka and Zeleznik 1996] Wloka, M. and Zeleznik, R.C. "Interactive Real-Time Motion
Blur", Visual Computer, Springer Verlag, 1996.

Resources

• ATI Developer Relations: http://www.ati.com/developer
• McCool’s sample application:

o http://www.cgl.uwaterloo.ca/Projects/rendering/Papers/#homomorphic
• For more on Animusic, see http://www.animusic.com

http://www.cs.unc.edu/~geom/APS/APS.pdf
http://www.cs.unc.edu/~geom/APS/APS.pdf
http://www.debevec.org/
http://www.ati.com/developer
http://www.cgl.uwaterloo.ca/Projects/rendering/Papers/
http://www.cgl.uwaterloo.ca/Projects/rendering/Papers/
http://www.animusic.com/

	Introduction
	RADEON™ 9700 Vertex Shaders
	RADEON™ 9700 Pixel Shaders: First with Floating P�
	The Common Example Shaders
	High Dynamic Range Rendering
	HDR Implementation on RADEON™ 9700
	References

