- =
SIGGRAPH 2003

SAN DI EGDO

=~
(’\, |
,

SIGGRAPH 2003

ATI R3X0 Pixel Shaders

Jason L. Mitchell

3D Application Research Group Lead
ATI Research

/T

Outline (

Architectural Overview
- Vertex & Pixel

Focus on pixel shader
— Precision
— Co-issue

- Case Study: Real-time Uberlight
Choosing correct frequency of evaluation
Vectorizing

©

R3X0 Shaders

Vertex Shader

— Longer programs than previous generation
— Static flow control

Pixel Shader

- Floating point
— Longer programs than previous generation

R3X0 Pixel Shaders (”3

ARB_fragment_program & OpenGL Shading Language
DirectX® 9 ps_2_0 pixel shader model
64 alu ops

— On R3x0 hardware, these can be a vec4 operation or a vec3
coissued with a scalar op

- ps_2_0 model does not expose co-issue

— For this and other reasons, hardware cycle counts are less than
or equal to ps_2_0 cycle counts

32 texture ops
- 4 |levels of dependency
One and only one precision in shader
- 24-bit floating point (s16e7)
Secret sauce
— Many cycle counts are less than you would think

Why I‘Etaln CO'ISSUE? smcgpv 2003

Engineering answer
— Scalar and vec3 operations are common
— Allows us to do some vectorization of scalar code

Marketing answer

- In the marketplace, a new chip must not only be
the best at new features but speed up old ones

— Co-issue is out there

Used often by shipping games and must not run slower
on new hardware than on old

Microsoft High Level Shading Language (HLSL) compiler
does a good job of generating co-issue when compiling
for legacy shader models, hence co-issue will continue
to be used for those models

P rec I S I 0 n smsgpl 2003

Single 24-bit floating point data format for the pixel pipeline

Classic speed and die-area tradeoff

Interpolated texture coordinates are higher precision but
everything else operates at this one specific precision

Programmers don’t have to worry about datatypes with
varying precision and performance characteristics

— Just high performance all the time

Having a single hardware model used to support all pixel
shading models significantly simplifies the driver:

- Legacy multitexture
— DirectX 8.x pixel shading
— DirectX 9 pixel shading

©

Uberlight

Will now illustrate the value of these
architectural properties with an
example: Uberlight

— Intuitive enough to cover here

- Complex enough to be interesting

— Scalar-heavy but vectorizable

— Requires reasonable precision

What is Uberlight?

Intuitive light described by Ronen Barzel in
“Lighting Controls for Computer Cinematography” in
the Journal of Graphics Tools, vol. 2, no. 1: 1-20

See also Chapter 14 in Advanced RenderMan® by
Apodaca and Gritz

Uberlight is procedural and has many intuitive

controls:

— light type, intensity, light color, cuton, cutoff, near edge, far edge, falloff,
falloff distance, max intensity, parallel rays, shearx, sheary, width, height,
width edge, height edge, roundness and beam distribution

There’s a good RenderMan® sl version in the public
domain written by Larry Gritz

- . h ®)
Uberlight Overview D

For each light
— Transform P to light space

- Smooth clip to procedural volume
Near, far and nested superellipses

- Distance falloff

— Beam distribution

— Ray direction

- Blockers

— Projective textures
Shadow, noise & cookies

Today, I'll talk about one light and
ignore blockers

@

Uberlight Volume o

Volume defined in space of light source

Omnilight or spotlight modes
— Will discuss spotlight today
Nested extruded superellipses
— White inside inner superellipse
— Black outside outer superellipse
- Smooth transition in between
Near and Far planes

- Smooth cuton and cutoff

Procedural Light Volume ©

SIGGRAPH 2003

Near Edge
Roundness = 1

CutOff

Far Edg‘e/vl...

SIGGRAPH 2003

Procedural Light Volume

Roundness = 0.75

SIGGRAPH 2003

Procedural Light Volume

Roundness = 0.45

Procedural Light Volume _ ¥

SIGGRAPH 2003

Roundness = 0.45

DirectX 9 HLSL Uberlight ©
Implementation SIGGRAPH 2003

Manually ported from sl to DirectX 9 HLSL
using ps_2_0 compile target on R3x0

Perform computation at right frequency

- Perform some computation in vertex shader
Transformation to light space
Projective texture coordinate generation for cookies etc

- Do some precomputation outside of the shader

Vectorize
— There are clear opportunities for vectorization

(§§§>

SIGGRAPH 2003

SAN DIEGO

RenderMan® clipSuperellipse ()

float clipSuperellipse (point Q; /* Test point on the x-y plane */
float a, b; /* Inner superellipse */
float A, B; /* Outer superellipse */
float roundness; /* Same roundness for both ellipses */
)
{ Ignore this
float result; case tOday
float x = abs(xcomp(Q)), y = abs(ycomp(Q)) ;

v

if (roundness < 1.0e-6)

{

/* Simpler case of a square */
result = 1 - (l-smoothstep(a,A,x)) * (l-smoothstep(b,B,y)):;

}

else

{

/* Harder, rounded corner case */

float re = 2/roundness; /* roundness exponent */

float gq = a * b * pow (pow(b*x, re) + pow(a*y, re), -1l/re);
float r = A * B * pow (pow(B*x, re) + pow(A*y, re), -1l/re);

} result = smoothstep (q, r, 1);

return result;

ATIl R3X0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Straight Port to HLSL

Non-rectangle case; minor syntactic changes
Compiles to 42 cycles in ps_2_0, 40 cycles on R3x0

float clipSuperellipse (
float3 Q,

float a,
float b,
float A,
float B,
float roundness)

<

// Test point on the x-y plane
// Inner superellipse

(ﬁfij

SIGGRAPH 2003

SAN DIE

Heavy use of
scalar uniform

// Outer superellipse

// Roundness for both ellipses

float|x = abs(Q.x), y =

abs (Q.y) ; |«

parameters
results in

greedy use of
conctant _____
Vectorizabl

float |gq
float |

float re =|2/roundness;|<

a * b * pow(pow(b*x|, re) + pow(a*y| re), |-1/re);
A * B * pow(pow(B*x| re) + pow(A*y| re), |-1/re);

Can bhe

return smoothstep (q, r,

1);

ATIl R3X0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

precomputed

threads

Vectorized Version

Pack relevant scalars together
Reduces constant register usage
Allows us to vectorize abs () and the multiplications

Precompute functions of roundness in app

Compiles to 33 cycles in ps_2_ 0 (28 cycles on R3x0)

<§§§>

SIGGRAPH 2003

SAN DIEGO

float clipSuperellipse (

float2 Q,

// Test point on the x-y plane

Scalar

Annctante

float4d aABb

// Dimensions of supereilipses

float2 r)! // Two functions of roundness

Precomputed
scalars packed

float2 qr, |Qabs = abs(Q) ; |« into a float2
float2 bx Bx = Qabs.x * aABb.wzyx;| // Unpack bB Vector
float2 ay Ay = Qabs.y * aABb; B Operatl‘)ns
qr.x = pow(pow(bx Bx.x, [r.x) + pow(ay Ay.x, [r.x), |[r.y];

qr.y = pow(pow(bx Bx.y, [r.x) + pow(ay Ay.y, [¥.x), |[r.y];

gr *= aABb * aABb.wzyx;

<

return smoothstep (qr.x, qr.y, 1);

ATIl R3X0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

smoothstep () ©

SIGGRAPH 2003

Standard function in procedural shading

Intrinsics built into RenderMan® and
DirectX HLSL:

1

I
edgeO edgel

C implementation D

float smoothstep (float edgeO, float edgel, float x)

if (x < edge0)
return O;

if (x >= edgel)
return 1;

// Scale/bias into [0..1] range
x (x - edgel) / (edgel - edgeO) ;

return x * x * (3 - 2 * x);

HLSL implementation .. .

The free saturate handles x outside
of [edge0..edgel] range without the
conditionals

float smoothstep (float edgeO, float edgel, float x)
{

// Scale, bias and saturate x to 0..1 range
X = saturate((x - edgel) / (edgel - edge0)) ;

// Evaluate polynomial
return x*x* (3-2*x) ;

Vectorized HLSL .. O .

Precompute 1/ (edgel - edge0)
Done in the app for edge widths at cuton and cutoff

Parallel operations performed on £loat3s

Whole spotlight volume computation of Uberlight compiles
to 47 cyclesin ps_2_0 (41 cycles on R3x0)

float3 smoothstep3 (float3 edgel, float3 edgel,

{

// Scale, bias and saturate x to [0..1] range

float3 OneOverWidth,{float3 x) Precompute

1

X

saturate ((x - edge0l) * |OneOverWidth) sp-te Vector

// Evaluate polynomial
return |x*x* (3-2*x) ; |«

operations

ATl R3XO0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

More uberlight controls (

Shear

— Can be useful to match desired light
direction with orientation of shaped light
source such as a window in a wall

Distance falloff
Beam Distribution
— Angular falloff

Ray direction
— Parallel light or radiating from source

Distance Falloff (

Range Falloff:

Beam Distribution (

Angular falloff:

Ray Direction (

RarhieRRwpys:

Projective Textures (

Cookie, noise and shadow map

Generate projective texture
coordinates in vertex shader

Do projective texture loads in pixel
shader

Modulate with Uberlight intensity

Projected 2D Noise (

Cookie

ATl R3XO0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Shadows

Shadows (

Self Shadowing

Fog Volume Rendering (

Technique developed
in several papers by
Dobashi and Nishita

Space :

Borrows from
medical volume
visualization
approaches

Shade sampling
planes in light space

Composite into Sampling
frame buffer to Planes
approximate integral

along view rays Viewpoint

Sampling Planes (

Shaded in light space

— Project cookies as in Dobashi papers
— Run shader like uberlight

Parallel to view plane
Vertex shader stretches them to fill view-
space bounding box of light frustum

Clipped to light frustum with user clip
planes

— Absolutely required due to extreme fill
demands

Summary

Focused on R3x0

©

SIGGRAPH 2003

pixel shader

— Illustrated architectural properties with
real-time Uberlight implementation

— As a side effect, gave some tips on how to
write HLSL that generates efficient code

— Rendered shafts of light through

participating med
some of the uber

Will put demo ap

ium in order to illustrate
ight controls

D online at some point

References (

[Barzel97] Ronen Barzel, “Lighting
Controls for Computer Cinematography” in
the Journal of Graphics Tools, vol. 2, no.

1: 1-20

[Dobashi02] Yoshinori Dobashi, Tsuyoshi
Yamamoto and Tomoyuki Nishita,
“Interactive Rendering of Atmospheric
Scattering Effects Using Graphics
Hardware,” Graphics Hardware 2002.

- =
SIGGRAPH 2003

SAN DI EGDO

