
ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

ATI R3x0 Pixel Shaders

Jason L. Mitchell
3D Application Research Group Lead
ATI Research

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Outline

• Architectural Overview

–Vertex & Pixel

• Focus on pixel shader

–Precision

–Co-issue

–Case Study: Real-time Überlight

• Choosing correct frequency of evaluation

• Vectorizing

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

R3x0 Shaders

• Vertex Shader

–Longer programs than previous generation

–Static flow control

• Pixel Shader

–Floating point

–Longer programs than previous generation

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

R3x0 Pixel Shaders

• ARB_fragment_program & OpenGL Shading Language

• DirectX® 9 ps_2_0 pixel shader model

• 64 alu ops

– On R3x0 hardware, these can be a vec4 operation or a vec3

coissued with a scalar op

– ps_2_0 model does not expose co-issue

– For this and other reasons, hardware cycle counts are less than
or equal to ps_2_0 cycle counts

• 32 texture ops

– 4 levels of dependency

• One and only one precision in shader

– 24-bit floating point (s16e7)

• Secret sauce

– Many cycle counts are less than you would think

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Why retain co-issue?

• Engineering answer
– Scalar and vec3 operations are common

– Allows us to do some vectorization of scalar code

• Marketing answer
– In the marketplace, a new chip must not only be

the best at new features but speed up old ones

– Co-issue is out there

• Used often by shipping games and must not run slower
on new hardware than on old

• Microsoft High Level Shading Language (HLSL) compiler
does a good job of generating co-issue when compiling
for legacy shader models, hence co-issue will continue
to be used for those models

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Precision

• Single 24-bit floating point data format for the pixel pipeline

• Classic speed and die-area tradeoff

• Interpolated texture coordinates are higher precision but

everything else operates at this one specific precision

• Programmers don’t have to worry about datatypes with

varying precision and performance characteristics

– Just high performance all the time

• Having a single hardware model used to support all pixel

shading models significantly simplifies the driver:

– Legacy multitexture

– DirectX 8.x pixel shading

– DirectX 9 pixel shading

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Überlight

• Will now illustrate the value of these
architectural properties with an
example: Überlight

– Intuitive enough to cover here

–Complex enough to be interesting

–Scalar-heavy but vectorizable

–Requires reasonable precision

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

What is Überlight?

• Intuitive light described by Ronen Barzel in
“Lighting Controls for Computer Cinematography” in
the Journal of Graphics Tools, vol. 2, no. 1: 1-20

• See also Chapter 14 in Advanced RenderMan® by
Apodaca and Gritz

• Überlight is procedural and has many intuitive
controls:
– light type, intensity, light color, cuton, cutoff, near edge, far edge, falloff,

falloff distance, max intensity, parallel rays, shearx, sheary, width, height,
width edge, height edge, roundness and beam distribution

• There’s a good RenderMan® sl version in the public
domain written by Larry Gritz

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Überlight Overview
• For each light

– Transform P to light space

– Smooth clip to procedural volume
• Near, far and nested superellipses

– Distance falloff

– Beam distribution

– Ray direction

– Blockers

– Projective textures
• Shadow, noise & cookies

• Today, I’ll talk about one light and
ignore blockers

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Überlight Volume

• Volume defined in space of light source

• Omnilight or spotlight modes

– Will discuss spotlight today

• Nested extruded superellipses

– White inside inner superellipse

– Black outside outer superellipse

– Smooth transition in between

• Near and Far planes

– Smooth cuton and cutoff

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Procedural Light Volume

Roundness = 1

a

b

A

B

CutOff

CutOn

Far Edge

Near Edge

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Procedural Light Volume

Roundness = 0.75

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Procedural Light Volume

Roundness = 0.45

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Procedural Light Volume

Roundness = 0.45

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

DirectX 9 HLSL Überlight
Implementation

• Manually ported from sl to DirectX 9 HLSL
using ps_2_0 compile target on R3x0

• Perform computation at right frequency

– Perform some computation in vertex shader

• Transformation to light space

• Projective texture coordinate generation for cookies etc

– Do some precomputation outside of the shader

• Vectorize

– There are clear opportunities for vectorization

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

RenderMan® clipSuperellipse()

float clipSuperellipse (point Q; /* Test point on the x-y plane */

float a, b; /* Inner superellipse */

float A, B; /* Outer superellipse */

float roundness; /* Same roundness for both ellipses */

)

{

float result;

float x = abs(xcomp(Q)), y = abs(ycomp(Q));

if (roundness < 1.0e-6)

{

/* Simpler case of a square */

result = 1 - (1-smoothstep(a,A,x)) * (1-smoothstep(b,B,y));
}
else
{

/* Harder, rounded corner case */

float re = 2/roundness; /* roundness exponent */

float q = a * b * pow (pow(b*x, re) + pow(a*y, re), -1/re);

float r = A * B * pow (pow(B*x, re) + pow(A*y, re), -1/re);

result = smoothstep (q, r, 1);
}

return result;
}

Ignore this

case today

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Straight Port to HLSL

float clipSuperellipse (

float3 Q, // Test point on the x-y plane

float a, // Inner superellipse

float b,

float A, // Outer superellipse

float B,

float roundness) // Roundness for both ellipses

{

float x = abs(Q.x), y = abs(Q.y);

float re = 2/roundness;

float q = a * b * pow(pow(b*x, re) + pow(a*y, re), -1/re);

float r = A * B * pow(pow(B*x, re) + pow(A*y, re), -1/re);

return smoothstep (q, r, 1);

}

• Non-rectangle case; minor syntactic changes

• Compiles to 42 cycles in ps_2_0, 40 cycles on R3x0

Heavy use of

scalar uniform

parameters

results in

greedy use of

constant

registers,

limiting number

of active

threads

Vectorizable

Can be

precomputed

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Vectorized Version

float clipSuperellipse (

float2 Q, // Test point on the x-y plane

float4 aABb, // Dimensions of superellipses

float2 r) // Two functions of roundness
{

float2 qr, Qabs = abs(Q);

float2 bx_Bx = Qabs.x * aABb.wzyx; // Unpack bB

float2 ay_Ay = Qabs.y * aABb;

qr.x = pow(pow(bx_Bx.x, r.x) + pow(ay_Ay.x, r.x), r.y);

qr.y = pow(pow(bx_Bx.y, r.x) + pow(ay_Ay.y, r.x), r.y);

qr *= aABb * aABb.wzyx;

return smoothstep (qr.x, qr.y, 1);
}

• Pack relevant scalars together

• Reduces constant register usage

• Allows us to vectorize abs() and the multiplications

• Precompute functions of roundness in app

• Compiles to 33 cycles in ps_2_0 (28 cycles on R3x0)

Scalar

constants

packed

together

Note the

orderingVector

operations

Precomputed

scalars packed
into a float2

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

smoothstep()

•Standard function in procedural shading

•Intrinsics built into RenderMan® and
DirectX HLSL:

0

1

edge0 edge1

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

C implementation

float smoothstep (float edge0, float edge1, float x)

{

if (x < edge0)

return 0;

if (x >= edge1)

return 1;

// Scale/bias into [0..1] range

x = (x - edge0) / (edge1 - edge0);

return x * x * (3 - 2 * x);

}

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

HLSL implementation

float smoothstep (float edge0, float edge1, float x)

{

// Scale, bias and saturate x to 0..1 range

x = saturate((x - edge0) / (edge1 – edge0));

// Evaluate polynomial

return x*x*(3-2*x);

}

• The free saturate handles x outside

of [edge0..edge1] range without the

conditionals

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Vectorized HLSL

float3 smoothstep3(float3 edge0, float3 edge1,

float3 OneOverWidth, float3 x)

{

// Scale, bias and saturate x to [0..1] range

x = saturate((x - edge0) * OneOverWidth);

// Evaluate polynomial

return x*x*(3-2*x);

}

• Precompute 1/(edge1 – edge0)

• Done in the app for edge widths at cuton and cutoff

• Parallel operations performed on float3s

• Whole spotlight volume computation of überlight compiles
to 47 cycles in ps_2_0 (41 cycles on R3x0)

Precompute

1

(edge1–edge0)
Vector
operations

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

More überlight controls

• Shear

–Can be useful to match desired light
direction with orientation of shaped light
source such as a window in a wall

• Distance falloff

• Beam Distribution

–Angular falloff

• Ray direction

–Parallel light or radiating from source

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Distance Falloff

Range Falloff:

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Beam Distribution

Angular falloff:

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Ray Direction

Parallel Rays:Radial Rays:

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Projective Textures

• Cookie, noise and shadow map

• Generate projective texture
coordinates in vertex shader

• Do projective texture loads in pixel
shader

• Modulate with überlight intensity

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Projected 2D Noise

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Cookie

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Shadows

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Shadows

Self Shadowing

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Fog Volume Rendering

Sampling
Planes

Viewpoint

Screen

• Technique developed
in several papers by
Dobashi and Nishita

• Borrows from
medical volume
visualization
approaches

• Shade sampling
planes in light space

• Composite into
frame buffer to
approximate integral
along view rays

Light
Space

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Sampling Planes

• Shaded in light space

– Project cookies as in Dobashi papers

– Run shader like überlight

• Parallel to view plane

• Vertex shader stretches them to fill view-
space bounding box of light frustum

• Clipped to light frustum with user clip
planes

– Absolutely required due to extreme fill
demands

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

Summary

• Focused on R3x0 pixel shader

– Illustrated architectural properties with
real-time überlight implementation

–As a side effect, gave some tips on how to
write HLSL that generates efficient code

–Rendered shafts of light through
participating medium in order to illustrate
some of the überlight controls

• Will put demo app online at some point

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

References

• [Barzel97] Ronen Barzel, “Lighting
Controls for Computer Cinematography” in
the Journal of Graphics Tools, vol. 2, no.
1: 1-20

• [Dobashi02] Yoshinori Dobashi, Tsuyoshi
Yamamoto and Tomoyuki Nishita,
“Interactive Rendering of Atmospheric
Scattering Effects Using Graphics
Hardware,” Graphics Hardware 2002.

ATI R3x0 Pixel Shaders - SIGGRAPH 2003 Hardware Shading Course

