
3.0 Shaders3.0 Shaders
Jason MitchellJason Mitchell
ATI ResearchATI Research

OutlineOutline

•• Vertex ShadersVertex Shaders
–– Vertex TexturesVertex Textures
–– Flow controlFlow control

•• Pixel ShadersPixel Shaders
–– Flow controlFlow control
–– OptimizationOptimization

•• Shadow MappingShadow Mapping
–– New functionalityNew functionality

•• vPosvPos for interleaved samplingfor interleaved sampling

3.0 Vertex Shaders3.0 Vertex Shaders

•• Texture lookupsTexture lookups
•• Loop indexable inputs (Loop indexable inputs (vvnn) and outputs (o) and outputs (onn))

–– Not just constantsNot just constants
•• More temps (32)More temps (32)
•• Longer programsLonger programs

–– At least 512 instructions. See At least 512 instructions. See
MaxVertexShader30InstructionSlotsMaxVertexShader30InstructionSlots for exact number on a for exact number on a
given chipgiven chip

•• Same flow control as devices which Same flow control as devices which
support the vs_2_a compile targetsupport the vs_2_a compile target

Vertex TexturingVertex Texturing

•• With vs_3_0, vertex shaders can With vs_3_0, vertex shaders can
sample texturessample textures

•• Many applicationsMany applications
–– Displacement mappingDisplacement mapping
–– Large offLarge off--chip matrix palettechip matrix palette
–– Generally cycling processed data Generally cycling processed data

(pixels) back into the vertex engine(pixels) back into the vertex engine

Vertex Texturing DetailsVertex Texturing Details

•• With the With the texldltexldl instruction, a vs_3_0 shader instruction, a vs_3_0 shader
can access memorycan access memory

•• The LOD must be computed by the shaderThe LOD must be computed by the shader
•• Four texture sampler stagesFour texture sampler stages

–– D3DVERTEXTEXTURESAMPLER0..3D3DVERTEXTEXTURESAMPLER0..3

•• Use Use CheckDeviceFormat()CheckDeviceFormat() with with
D3DUSAGE_QUERY_VERTEXTEXTURED3DUSAGE_QUERY_VERTEXTEXTURE to to
determine format supportdetermine format support

•• Look at Look at VertexTextureFilterCapsVertexTextureFilterCaps to to
determine filtering supportdetermine filtering support

vs_3_0 Outputsvs_3_0 Outputs

•• 12 generic output (o12 generic output (onn) registers) registers
•• Must declare their semantics upMust declare their semantics up--

front like the input registersfront like the input registers
•• Can be used for any interpolated Can be used for any interpolated

quantity (plus point size)quantity (plus point size)
•• There must be one 4There must be one 4--component component

output with the output with the positiontpositiont semanticsemantic

Semantic LinkageSemantic Linkage

•• Must use 3.0 vertex and pixel Must use 3.0 vertex and pixel
shaders togethershaders together

•• Input declarations take the usage Input declarations take the usage
names, and multiple usages are names, and multiple usages are
permitted for components of a permitted for components of a
given registergiven register

Connecting VS to PSConnecting VS to PS

2.0 Vertex Shader

oD0oPos oPtsoFog oD1 oT0 oT1 oT2 oT3 oT4 oT5 oT6 oT7

3.0 Vertex Shader

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11o0

2.0 Pixel Shader

v0 v1 t0 t1 t2 t3 t4 t5 t6 t7

Triangle
Setup

Semantic Mapping

FF
u

n
c

3.0 Pixel Shader

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 vPos.xy vFace

Triangle
Setup

vs_3_0 Semantic Declarationvs_3_0 Semantic Declaration

vs_3_0
dcl_color4 o3.x // color4 is a semantic name
dcl_texcoord3 o3.yz // Different semantics can be packed into one register
dcl_fog o3.w
dcl_tangent o4.xyz
dcl_positiont o7.xyzw // positiont must be declared to some unique register

// in a vertex shader, with all 4 components
dcl_psize o6 // Pointsize cannot have a mask
...

Dynamic Flow ControlDynamic Flow Control

•• The HLSL compiler has a set of heuristics The HLSL compiler has a set of heuristics
about when it is better to emit an algebraic about when it is better to emit an algebraic
expansion, rather than use real dynamic expansion, rather than use real dynamic
flow controlflow control
–– Number of variables changed by the blockNumber of variables changed by the block
–– Number of instructions in the body of the blockNumber of instructions in the body of the block
–– Type of instructions inside the blockType of instructions inside the block
–– Whether the HLSL has texture or gradient Whether the HLSL has texture or gradient

instructions inside the blockinstructions inside the block
•• Blindly changing compile targets can kill your Blindly changing compile targets can kill your

performance, especially if you nest ifsperformance, especially if you nest ifs

Hardware ParallelismHardware Parallelism

•• There are many shader units executing in parallelThere are many shader units executing in parallel
•• Dynamic flow control can cause inefficiencies since Dynamic flow control can cause inefficiencies since

different pixels/vertices can take different code pathsdifferent pixels/vertices can take different code paths
•• Hardware will compute the right results, but you will Hardware will compute the right results, but you will

not always see the intended performance gainnot always see the intended performance gain
•• For an For an if…elseif…else, there will be cases where evaluating , there will be cases where evaluating

both the blocks is faster than using dynamic flow both the blocks is faster than using dynamic flow
control, particularly if there is a small number of control, particularly if there is a small number of
instructions in each blockinstructions in each block

•• Depending on the mix of vertices or pixels, the worst Depending on the mix of vertices or pixels, the worst
case performance can be worse than executing case performance can be worse than executing
straight line code without any branching at allstraight line code without any branching at all

Caveat emptorCaveat emptor

Pixel ShadersPixel Shaders

•• Semantic linkage with vertex shaderSemantic linkage with vertex shader
–– Similar to vertex declarationsSimilar to vertex declarations
–– Generic Generic vvnn registers at asm level like vertex shader (all registers at asm level like vertex shader (all fpfp))

•• Dynamic flow controlDynamic flow control
–– caveat emptorcaveat emptor

•• Longer programsLonger programs
–– At least 512 (At least 512 (cap’dcap’d MaxPixelShader30InstructionSlotsMaxPixelShader30InstructionSlots))

•• More registersMore registers
–– Constants (224) and temps (32)Constants (224) and temps (32)

•• Indexable input registers (but not constants)Indexable input registers (but not constants)
•• textex**DlodDlod ((texldltexldl at asm level)at asm level)

–– Specify LOD (not bias) directly in texture load instructionSpecify LOD (not bias) directly in texture load instruction
•• New registersNew registers

–– vFacevFace –– Scalar face registerScalar face register
–– vPosvPos -- Screen (x, y) position registerScreen (x, y) position register
–– aLaL –– Loop counterLoop counter

Input RegistersInput Registers

•• Bank of 10 floating point registersBank of 10 floating point registers
•• IndexableIndexable

vFacevFace

•• Scalar register whose sign indicates Scalar register whose sign indicates
the facingthe facing--ness of the triangleness of the triangle
–– Positive for front facingPositive for front facing
–– Negative for back facingNegative for back facing

•• Can be interesting for things like Can be interesting for things like
twotwo--sided lightingsided lighting

•• In future shader models, will In future shader models, will
contain primitive areacontain primitive area

Pixel Shader Loop Register (Pixel Shader Loop Register (aLaL))

•• Incremented by Incremented by loop...loop...endloopendloop
blockblock

•• Can be used to index into Can be used to index into
interpolator registers onlyinterpolator registers only

Looping and HLSLLooping and HLSL

•• Most of the time, this is a convenience to the Most of the time, this is a convenience to the
developer and will actually be unrolleddeveloper and will actually be unrolled

•• Dynamic number of iterationsDynamic number of iterations
–– Make it obvious to the compiler that there is an upper Make it obvious to the compiler that there is an upper

limit to the number of iterations that may dynamically limit to the number of iterations that may dynamically
occur occur

•• HLSL constructs which cause unrolling of dynamic HLSL constructs which cause unrolling of dynamic
(not static) loops(not static) loops
–– Anything that needs a gradient (i.e. tex2D)Anything that needs a gradient (i.e. tex2D)
–– Indexing a local array, because these are not actually Indexing a local array, because these are not actually

indexable in the virtual shader machineindexable in the virtual shader machine
–– Can index input Can index input iteratorsiterators

•• There is no There is no breakbreak keyword in HLSLkeyword in HLSL
–– Can be generated by the compiler in the asm based Can be generated by the compiler in the asm based

upon condition in whileupon condition in while
–– Will show this in a later exampleWill show this in a later example

Known bounds on iterationKnown bounds on iteration

float4 ps_main(float4 inTexCoord : TEXCOORD0,
float3 inOffset : TEXCOORD1) : COLOR0

{
float4 fH = 0;

// Sample iteration map to determine how much to iterate
int nNumSamples = (int)(tex2D(sAMap, inTexCoord).r * 255.0) % 15;

float2 dx = ddx(inTexCoord);
float2 dy = ddy(inTexCoord);

for (int nIndex = 0; nIndex < nNumSamples; nIndex++)
{

float2 texOffset = inTexCoord + inOffset * nIndex;
fH += tex2Dgrad(sBMap, texOffset, dx, dy).w;

}
return fH;

}

Speeds up Speeds up
compilationcompilation

Resulting AssemblyResulting Assembly
ps_3_0

def c0, 255, 0, 1, 0
def c1, 15, -15, 0, 0
defi i0, 15, 0, 0, 0
dcl_texcoord v0.xy
dcl_texcoord1 v1.xy
dcl_2d s0
dcl_2d s1

…
dsx r3.xy, v0
dsy r4.xy, v0
mov r1, c0.y
mov r0.w, c0.y
rep i0

break_ge r0.w, r0.z
mov r0.xy, v0
mad r0.xy, v1, r0.w, r0
texldd r2, r0, s0, r3, r4
add r0.w, r0.w, c0.z
add r1, r1, r2.w

endrep
mov oC0, r1

ReturningReturning

•• If you want to return inside of an If you want to return inside of an
if…else it must be symmetricif…else it must be symmetric

Symmetric returnsSymmetric returns
edge = tex2D(EdgeSampler, oTex0).r;

if(edge > 0)
{

return tex2Dlod(BaseSampler, oTex0);

}
else
{

return 0;
}

texld r0, v0, s1
cmp r0.w, -r0.x, c0.x, c0.y
if_ne r0.w, -r0.w
texldl oC0, v0, s0

else
mov oC0, c0.x

endif

vPosvPos

•• vPos.xyvPos.xy contains screencontains screen--space space
position (position (zz and and ww are undefined)are undefined)

•• Useful for screenUseful for screen--space space
operations such as interleaved operations such as interleaved
sampling (see [Keller01])sampling (see [Keller01])

Interleaved SamplingInterleaved Sampling

•• Do slightly different operations at Do slightly different operations at
neighboring pixels in screen spaceneighboring pixels in screen space

•• Two examples shown here:Two examples shown here:
1. Volumetric Light shafts1. Volumetric Light shafts

•• Tweak position used in volume renderingTweak position used in volume rendering
2. Shadow filtering2. Shadow filtering

•• Vary filter kernel layout as a function of Vary filter kernel layout as a function of
screen positionscreen position

Light Shafts with Interleaved SamplingLight Shafts with Interleaved Sampling
struct PsInput
{ float4 vWorldPos[4] : TEXCOORD0;

float4 vClipPos : TEXCOORD4;
float2 vScreenPos : VPOS;

};

float4 main (PsInput i) : COLOR {

…

// Based on the screen (x,y), determine whether the pixel is even or odd
int2 vEvenOdd = (int) floor(fmod((i.vScreenPos.xy + 0.5), 2.0));

int iIndex = abs(3 * vEvenOdd.x - 2 * vEvenOdd.y);

// Calculate the projective texture coordinate for the selected plane
float4 vTexProj = mul(i.vWorldPos[iIndex], mLightViewProjBias);

…Sample cookie, shadow and noise maps using tweaked coordinates
Compute attenuation based on tweaked position…

// Final color output
float fIntensity = fCompositeNoise * cCookie.rgb * fAtten * fScale;
o.rgb = fIntensity;
o.a = saturate(dot(o.rgb, float3(1.0f, 1.0f, 1.0f)));

return o;
}

0 2

3 1

2

1

0

3

0 2

3 1

0 2

3 1

Light Shafts with Interleaved SamplingLight Shafts with Interleaved Sampling

25 planes without
interleaved
sampling

25 planes with
interleaved
sampling

SpatiallySpatially--varying PCF Offsetsvarying PCF Offsets

1212--tap Spatially Varying PCFtap Spatially Varying PCF
with Irregular sampling

4×4 (164×4 (16--tap) PCFtap) PCF
with Irregular sampling

•• GridGrid--based PCF kernel needs to be fairly large to eliminate aliasingbased PCF kernel needs to be fairly large to eliminate aliasing
–– Particularly in cases with small detail popping in and out of thParticularly in cases with small detail popping in and out of the underlying hard shadow.e underlying hard shadow.

•• Irregular sampling allows us to get away with fewer samplesIrregular sampling allows us to get away with fewer samples
–– Error is still present, only the error is “unstructured” and thuError is still present, only the error is “unstructured” and thus less noticeables less noticeable

Percentage Closer FilteringPercentage Closer Filtering

50.1 50.0

50.2

50.0

1.2

1.4 1.2

1.1

1.0

x

Depth Sample at 49.8

29.8
Filter Depth Map

1.0

Compare

<49.8?

Standard filtering: Filter depth first, then use value for shadow map comparison.

50.1 50.0

50.2

50.0

1.2

1.4 1.2

1.1

1.0

x

Depth Sample at 49.8

Per-Element
Compare

<49.8? 0 0

0

0

1

1 1

1

1

Percentage Filter

0.55

Percentage Closer Filtering: Perform shadow map comparison for each kernel
elements first, then filter results!

Irregular Filter KernelIrregular Filter Kernel

SpatiallySpatially--Varying RotationVarying Rotation
// Look up rotation for this pixel
float2 rot = BX2(tex2Dlod(RotSampler,

float4(vPos.xy * g_vTexelOffset.xy, 0, 0)));

for(int i=0; i<12; i++) // Loop over taps
{

// Rotate tap for this pixel location
rotOff.x = rot.r * quadOff[i].x + rot.g * quadOff[i].y;
rotOff.y = -rot.g * quadOff[i].x + rot.r * quadOff[i].y;
offsetInTexels = g_fSampRadius * rotOff;

// Sample the shadow map
float shadowMapVal = tex2Dlod(ShadowSampler,
float4(projCoords.xy + (g_vTexOff.xy * offInTexels.xy), 0, 0));
// Determine whether tap is in light
inLight = (dist < shadowMapVal);
// Normalize
percentInLight += inLight;

}

Obvious EarlyObvious Early--Out OptimizationsOut Optimizations

•• Zero skin Zero skin weight(sweight(s))
–– Skip Skip bone(sbone(s))

•• Light attenuation to zeroLight attenuation to zero
–– Skip light computationSkip light computation

•• NonNon--positive Lambertian termpositive Lambertian term
–– Skip light computationSkip light computation

•• Fully fogged pixelFully fogged pixel
–– Skip the rest of the pixel shaderSkip the rest of the pixel shader

•• Shadow FilteringShadow Filtering
–– Only run costly filter in possible penumbra regionsOnly run costly filter in possible penumbra regions

•• Many others like these…Many others like these…

Shadow Filtering with ps_3_0Shadow Filtering with ps_3_0

•• Only do expensive filtering in areas Only do expensive filtering in areas
likely to be penumbra regionslikely to be penumbra regions
–– Dynamic flow control in pixel shaderDynamic flow control in pixel shader

•• Can mask with a variety of values (no Can mask with a variety of values (no
light or full light means no penumbra!)light or full light means no penumbra!)
–– NN··LL
–– Projective Cookie texture (Projective Cookie texture (akaaka Gobo)Gobo)
–– EdgeEdge--filtered shadow mapfiltered shadow map

Simple example sceneSimple example scene

Desired final image

Shadow Depth Map

Shadow Map Edges

Mask off expensive filteringMask off expensive filtering

Union of
all three
masks

Only the white
pixels execute the
expensive path

Gobo == 0N·L < 0

Shadow
Edge Filter

HLSL Shader With EarlyHLSL Shader With Early--OutsOuts
...Compute projective coordinates and N.L...

if (dot(lightVal, float3(1,1,1)) == 0) {
return 0;

}
else
{

...Sample edge map...

if (edgeVal == 0) //compute hard shadows if we’re not near an edge
{

shadowMapVal = tex2Dlod(ShadowSampler, projCoords);
inLight = (dist < shadowMapVal);
percentInLight = dot(inLight, 0.25f);
return (percentInLight * lightVal);

}
else
{

randRot = BX2(tex2Dlod(RandRotSampler, float4(vPos * g_vFullTexelOffset,0,0)));
for (int i=0; i<12; i++)
{

...Do each expensive shadow sample...
}
return (percentInLight * lightVal);

}
}

Resulting AssemblyResulting Assembly
...
mul r0, r0, r1.z
dp3 r1.z, r0, c5.w
cmp r1.z, -r1_abs.z, c5.w, c5.z
if_ne r1.z, -r1.z

mov oC0, c5.z
else

rcp r5.z, r1.w
rcp r1.w, v1.w
mul r2.xy, r1.w, v1
mov r2.z, c2.x
texldl r1, r2.xyzz, s0
cmp r1.w, -r1_abs.x, c5.w, c5.z
if_ne r1.w, -r1.w

mov r2.w, c5.z
texldl r1, r2.xyww, s2
mad r1, r5.z, c1.x, -r1
cmp r1, r1, c5.z, c5.w
dp4 r1.w, r1, c6.x
mul oC0, r0, r1.w

else
mul r1.xy, vPos, c4

...130 instructions...
mul oC0, r0, r1.w

endif
endif

Aliasing due to ConditionalsAliasing due to Conditionals

•• Conditionals in pixel shaders can cause Conditionals in pixel shaders can cause
aliasing!aliasing!

•• You want to avoid doing a hard conditional You want to avoid doing a hard conditional
with a quantity that is key to determining with a quantity that is key to determining
your final your final colorcolor
–– Do a procedural smoothstep, use a preDo a procedural smoothstep, use a pre--filtered filtered

texture for the function you’re expressing or texture for the function you’re expressing or
bandlimit the expressionbandlimit the expression

–– This is a fine art. Huge amounts of effort go into This is a fine art. Huge amounts of effort go into
this in the offline world where procedural this in the offline world where procedural
RenderMan shaders are a stapleRenderMan shaders are a staple

•• On ps_2_a and ps_3_0, you can find out the On ps_2_a and ps_3_0, you can find out the
screen space derivatives of quantities in the screen space derivatives of quantities in the
shader for this purpose.shader for this purpose.

Shader AntialiasingShader Antialiasing
•• Computing derivatives (actually Computing derivatives (actually differencesdifferences) of shader quantities with respect) of shader quantities with respect

to screen to screen xx, , yy coordinates is fundamental to procedural shadingcoordinates is fundamental to procedural shading
•• LOD is calculated automatically based on a 2LOD is calculated automatically based on a 2××2 pixel quad, so you don’t 2 pixel quad, so you don’t

generally have to think about it, even for dependent texture fetgenerally have to think about it, even for dependent texture fetchesches
•• The HLSL The HLSL dsx()dsx(), , dsy()dsy() derivative intrinsic functions, available when derivative intrinsic functions, available when

compiling for ps_2_a and ps_3_0, can compute these derivatives compiling for ps_2_a and ps_3_0, can compute these derivatives

•• Use these derivatives to antialias your procedural shaders orUse these derivatives to antialias your procedural shaders or
•• Pass results of Pass results of dsx()dsx() and and dsy()dsy() to to textexnnD(s, t, D(s, t, ddxddx, , ddyddy))

dx
dr

dx
dt

dx
ds

dy
dr

dy
dt

dy
ds

Derivatives and Dynamic Flow ControlDerivatives and Dynamic Flow Control

•• The result of a gradient calculation on a The result of a gradient calculation on a
computed value (i.e. not an input such as a computed value (i.e. not an input such as a
texture coordinate) inside dynamic flow control texture coordinate) inside dynamic flow control
is ambiguous when neighboring pixels in a 2is ambiguous when neighboring pixels in a 2××2 2
quad may go down different pathsquad may go down different paths

•• Hence, nothing that requires a derivative of a Hence, nothing that requires a derivative of a
computed value may exist inside of dynamic computed value may exist inside of dynamic
flow controlflow control
–– This includes most texture fetches, This includes most texture fetches, dsx()dsx() and and dsy()dsy()
–– texldltexldl and and texlddtexldd work since you can compute the work since you can compute the

LOD or derivatives outside of the dynamic flow LOD or derivatives outside of the dynamic flow
controlcontrol

•• RenderMan has similar restrictionsRenderMan has similar restrictions

Derivatives and Dynamic Flow ControlDerivatives and Dynamic Flow Control
float edge = tex2D(EdgeSampler, oTex0).r;
float2 duvdx = ddx(oTex0);
float2 duvdy = ddy(oTex0);

if(edge > 0)
{

return tex2D(BaseSampler, oTex0, duvdx, duvdy);
}
else
{

return 0;
}

texld r0, v0, s1
cmp r0.w, -r0.x, c0.x, c0.y
dsx r0.xy, v0
dsy r1.xy, v0
if_ne r0.w, -r0.w
texldd oC0, v0, s0, r0, r1

else
mov oC0, c0.x

endif

SummarySummary

•• Vertex ShadersVertex Shaders
–– Vertex TexturesVertex Textures
–– Flow controlFlow control

•• Pixel ShadersPixel Shaders
–– Flow controlFlow control
–– OptimizationOptimization

•• Shadow MappingShadow Mapping
–– New functionalityNew functionality

•• vPosvPos for interleaved samplingfor interleaved sampling

AcknowledgementsAcknowledgements

•• Big thanks to John Isidoro, Natalya Big thanks to John Isidoro, Natalya
Tatarchuk and Dan Ginsburg for Tatarchuk and Dan Ginsburg for
many of the examples used in this many of the examples used in this
presentationpresentation

ReferencesReferences

•• [Keller01][Keller01] Alexander Keller and Wolfgang Alexander Keller and Wolfgang
HeidrichHeidrich, “Interleaved Sampling,” , “Interleaved Sampling,”
Eurographics Rendering Workshop 2001.Eurographics Rendering Workshop 2001.

•• [Reeves87] William T. Reeves, David H. [Reeves87] William T. Reeves, David H.
SalesinSalesin, and Robert L. Cook, "Rendering , and Robert L. Cook, "Rendering
Antialiased Shadows with Depth Maps", Antialiased Shadows with Depth Maps",
SIGGRAPH, 1987, pp. 283SIGGRAPH, 1987, pp. 283--291.291.

http://www.cs.ubc.ca/~heidrich/Projects/InterleavedSampling/
http://www.cs.ubc.ca/~heidrich/Projects/InterleavedSampling/

	3.0 Shaders
	Outline
	3.0 Vertex Shaders
	Vertex Texturing
	Vertex Texturing Details
	vs_3_0 Outputs
	Semantic Linkage
	Connecting VS to PS
	vs_3_0 Semantic Declaration
	Dynamic Flow Control
	Hardware Parallelism
	Pixel Shaders
	Input Registers
	vFace
	Pixel Shader Loop Register (aL)
	Looping and HLSL
	Known bounds on iteration
	Resulting Assembly
	Returning
	Symmetric returns
	vPos
	Interleaved Sampling
	Light Shafts with Interleaved Sampling
	Light Shafts with Interleaved Sampling
	Spatially-varying PCF Offsets
	Percentage Closer Filtering
	Irregular Filter Kernel
	Spatially-Varying Rotation
	Obvious Early-Out Optimizations
	Shadow Filtering with ps_3_0
	Simple example scene
	Mask off expensive filtering
	HLSL Shader With Early-Outs
	Resulting Assembly
	Aliasing due to Conditionals
	Shader Antialiasing
	Derivatives and Dynamic Flow Control
	Derivatives and Dynamic Flow Control
	Summary
	Acknowledgements
	References

