GameDevelopers

Conference

3.0 Shaders

Jason Mitchell
ATI Research

&

GameDevelopers

Conference

Outline

e Vertex Shaders
— Vertex Textures
— Flow control

e Pixel Shaders

— Flow control

— Optimization
 Shadow Mapping

— New functionality
« vPos for interleaved sampling

GameDevelopers

Conference

3.0 Vertex Shaders

e Texture lookups

e Loop indexable inputs (v,) and outputs (o,)
— Not just constants

e More temps (32)

e Longer programs

— At least 512 instructions. See
MaxVertexShader30InstructionSlots for exact number on a
given chip

« Same flow control as devices which
support the vs_2_a compile target

GameDevelopers

Conference

Vertex Texturing

e« With vs_3 0, vertex shaders can
sample textures
 Many applications
— Displacement mapping
— Large off-chip matrix palette
— Generally cycling processed data

(pixels) back into the vertex engine

GameDevelopers

Conference

Vertex Texturing Details

o With the tex1dl instruction, a vs_3_0 shader
can access memory

e The LOD must be computed by the shader

e Four texture sampler stages
— D3DVERTEXTEXTURESAMPLERO. .3

e Use CheckDeviceFormat () with
D3DUSAGE QUERY VERTEXTEXTURE to
determine format s support

e« Look at VertexTextureFilterCaps to
determine filtering support

GameDevelopers

Conference

vs_3_0 Outputs

« 12 generic output (o,) registers

e Must declare their semantics up-
front like the input registers

e Can be used for any interpolated
quantity (plus point size)

» There must be one 4-component =
output with the positiont semantic i ,

GameDevelopers
Conference

Semantic Linkage

e Must use 3.0 vertex and pixel
shaders together

e Input declarations take the usage
names, and multiple usages are
permitted for components of a
given register

&

GameDevelopers

Conference

Connecting VS to PS

2.0 Vertex Shader 3.0 Vertex Shader

00|ol1|02|03|04]|05| 06| 07| 08| 09 (010|011

oFog |oPos | oPts [oDO|oD1|0oT0|0oT1|0oT2|0oT3|0T4|0T5/0T6|0T7

y A A
. Y A 4 y A A\ 4 A Y y \ 4 A\ 4 A 4 Y

O || Triangle . .

c 9 Semantic Mapping

= Setup

L

L

Triangle
A 4 \ 4 A 4 A 4 \ 4 A 4 A 4 A 4 A 4 A Setup
vo|vi|tO|tl|t2|t3|t4|t5| t6 | t7
\ 4 A\ 4 \ 4 \ 4 \4 \4 \4 A\ 4 \ 4 \ 4

vO|vi|v2|v3|v4|Vv5|v6|Vv7 | v8| v9 | |vPos.xy| vFace

2.0 Pixel Shader 3.0 Pixel Shader

|
|
|
|
|
|
|
|
|
|
|
|
|
|
: v vy
|
|
|
|
|
|
|
|
|
|
|
|
|

GameDevelopers

Conference

vs 3 0 Semantic Declaration

vs 3 0
dcl color4 o3.x // color4 is a semantic name
dcl_ texcoord3 o3.yz // Different semantics can be packed into one register

dcl fog o3.w

dcl tangent o4.xyz

dcl positiont o7.xyzw // positiont must be declared to some unique register
// in a vertex shader, with all 4 components

dcl psize o6 // Pointsize cannot have a mask

GameDevelopers

Conference

Dynamic Flow Control

e« The HLSL compiler has a set of heuristics
about when it is better to emit an algebraic
expansion, rather than use real dynamic
flow control

— Number of variables changed by the block

— Number of instructions in the body of the block

— Type of instructions inside the block

— Whether the HLSL has texture or gradient
instructions inside the block

« Blindly changing compile targets can kill your
performance, especially if you nest ifs

GameDevelopers

Conference

Hardware Parallelism

« There are many shader units executing in parallel

« Dynamic flow control can cause inefficiencies since
different pixels/vertices can take different code paths

« Hardware will compute the right results, but you will
not always see the intended performance gain

« Foran if..else, there will be cases where evaluating
both the blocks is faster than using dynamic flow
control, particularly if there is a small number of
instructions in each block

« Depending on the mix of vertices or pixels, the worst
case performance can be worse than executing
straight line code without any branching at all

GameDevelopers

Conference

Pixel Shaders

« Semantic linkage with vertex shader

— Similar to vertex declarations

— Generic v, registers at asm level like vertex shader (all fp)
 Dynamic flow control

— caveat emptor
 Longer programs

— Atleast 512 (cap’d MaxPixelShader30InstructionSlots)
e More registers

— Constants (224) and temps (32)
e Indexable input registers (but not constants)
« tex*Dlod (texldl at asm level)

— Specify LOD (not bias) directly in texture load instruction
 New registers

- vFace — Scalar face register

- vPos - Screen (X, y) position register

— aL - Loop counter

GameDevelopers

Conference

Input Registers

e Bank of 10 floating point registers
e Indexable

&

GameDevelopers

Conference

vFace

e Scalar register whose sign indicates
the facing-ness of the triangle

— Positive for front facing
— Negative for back facing

e Can be interesting for things like
two-sided lighting

e In future shader models, will

; contain primitive area

GameDevelopers

Conference

Pixel Shader Loop Register (aL)

e Incremented by loop. . .endloop
block

e Can be used to index into
interpolator registers only

&

GameDevelopers

Conference

Looping and HLSL

« Most of the time, this is a convenience to the
developer and will actually be unrolled
« Dynamic number of iterations

— Make it obvious to the compiler that there is an upper
limit to the number of iterations that may dynamically
occur

e HLSL constructs which cause unrolling of dynamic
(not static) loops
— Anything that needs a gradient (i.e. tex2D)

— Indexing a local array, because these are not actually
indexable in the virtual shader machine

— Can index input iterators
e There is no break keyword in HLSL

— Can be generated by the compiler in the asm based
upon condition in while

— Will show this in a later example

GameDevelopers

Conference

Known bounds on iteration

float4 ps main(float4 inTexCoord : TEXCOORDO,

{

float3 inOffset : TEXCOORD1l) : COLORO
floatd fH = 0;

// Sample iteration map to determine how much to iterate

int nNumSamples = (int) (tex2D(sAMap, inTexCoord).r * 255.0)| % 15]

float2 dx = ddx(inTexCoord) ;
float2 dy = ddy(inTexCoord) ;

for (int nIndex = 0; nIndex < nNumSamples; nIndex++)
{
float2 texOffset = inTexCoord + inOffset * nIndex;
fH += tex2Dgrad(sBMap, texOffset, dx, dy) .w;
}

return fH;

Speeds up
compilation

v

GameDevelopers

Conference

Resulting Assembly

ps_3 0

def c0, 255, 0, 1, O
def e¢1, 15, -15, 0, O
defi iO, 15, 0, 0, O
dcl_texcoord v0.xy
dcl texcoordl vl.xy
dcl 2d sO

dcl 2d sl

dsx r3.xy, vO

dsy rd4.xy, vO

mov rl, cO0.y

mov rO.w, cO0.y

rep iO
break ge rO0O.w, r0.z
mov r0.xy, vO
mad r0.xy, vl, rO.w, rO
texldd r2, r0, s0, r3, r4
add rO.w, rO.w, c0.z
add rl, rl, r2.w

endrep

mov oCO, rl

GameDevelopers

Conference

Returning

e If you want to return inside of an
if...else it must be symmetric

&

GameDevelopers

Conference

Symmetric returns

edge = tex2D (EdgeSampler, oTex0) .r;

if (edge > 0)
{

return tex2Dlod (BaseSampler, oTexO0) ;

}
else
{)

return O; texld r0, vO0, sl
} cmp rO.w, -r0.x, c0.x, cO.y
if ne rO.w, -rO.w

texldl oCO, vO0, sO
else

mov oCO, c0.x
endif

GameDevelopers

Conference

vPos

« vPos . xy contains screen-space
position (z and w are undefined)

e Useful for screen-space
operations such as interleaved
sampling (see [Keller01])

&

GameDevelopers

Conference

Interleaved Sampling

e Do slightly different operations at
neighboring pixels in screen space

« Two examples shown here:
1. Volumetric Light shafts
 Tweak position used in volume rendering

2. Shadow filtering
 Vary filter kernel layout as a function of

screen position i —

/
*% : -
|:h:%

GameDevelopers

Conference

Light Shafts with Interleaved Sampling

struct PsInput

{ |floatd4 vWorldPos[4] : TEXCOORDO; |
float4 vClipPos . TEXCOORDA4: O120101]2
float2 vScreenPos : VPOS;
. 3 1 1311
};
0O12101]2
float4 main (PsInput i) : COLOR {
3 1 1311

// Based on the screen (x,y), determine whether the pixel is even or odd
int2 vEvenOdd = (int) floor (fmod((i.vScreenPos.xy + 0.5), 2.0));

int 4iIndex = abs(3 * vEvenOdd.x - 2 * vEvenOdd.y) ;

// Calculate the projective texture coordinate for the selected plane
float4 vTexProj = mulli.onrldPos[iIndex]l mLightViewProjBias) ;

...Sample cookie, shadow and noise maps using tweaked coordinates
Compute attenuation based on tweaked position...

// Final color output

float fIntensity = fCompositeNoise * cCookie.rgb * fAtten * fScale;
o.rgb = fIntensity;

o.a = saturate(dot(o.rgb, float3(1.0f, 1.0£f, 1.0£f)));

return o;

GameDevelopers

Conference

Light Shafts with Interleaved Sampling

25 planes withouj;éf_h;? g 25 planes with ﬁ "

F]

interleaved AN vemd interleaved
sampling e sampling

GameDevelopers

Conference

Spatially-varying PCF Offsets

12-tap Spatially Varying PCF
with Irregular sampling

4x4 (16-tap) PCF

« Grid-based PCF kernel needs to be fairly large to eliminate aliasing
— Particularly in cases with small detail popping in and out of the underlying hard shadow.

« Irregular sampling allows us to get away with fewer samples
— Error is still present, only the error is “unstructured” and thus less noticeable

GameDevelopers

Conference

Percentage Closer Filtering

/- Depth Sample at 49.8

50.1 5%.0 <49.8?
5022 | 1.1 | > 29.8I > 1.0

500| 1.4] 1.2 Filter Depth Map Compare

Standard filtering: Filter depth first, then use value for shadow map comparison.

/. Depth Sample at 49.8
50.1 | 50.0] /1.0 <49.87? 0 |o 1

X I
50.2] 1.2 | 11 0 1 1 0.55

50.0| 1.4 | 1.2 Per-Element 0 1 1 Percentage Filter
Compare

Percentage Closer Filtering: Perform shadow map comparison for each kernel
elements first, then filter results!

GameDevelopers

Conference

Irregular Filter Kernel

GameDevelopers

Conference

Spatially-Varying Rotation

// Look up rotation for this pixel
float2 rot = BX2(tex2Dlod (RotSampler,
floatd (vPos.xy |* g vTexelOffset.xy, 0, 0)));

for (int i=0; i<12; i++) // Loop over taps

{
// Rotate tap for this pixel location
rotOff.x = | rot.r * quadOff[i] .x + rot.g * quadOff[i] .y’
rotOff.y = |-rot.g * quadOff[i] .x + rot.r * quadOff[i].y;
offsetInTexels = g fSampRadius * rotOff;

// Sample the shadow map

float shadowMapVal = tex2Dlod(ShadowSampler,

float4d (projCoords.xy + (g vTexOff.xy * offInTexels.xy), 0, 0));
// Determine whether tap is in light

inLight = (dist < shadowMapVal) ;

// Normalize

percentInLight += inLight;

—

GameDevelopers

Conference

Obvious Early-Out Optimizations

e Zero skin weight(s)
— Skip bone(s)
e Light attenuation to zero
— Skip light computation
e Non-positive Lambertian term
— Skip light computation
e Fully fogged pixel
— Skip the rest of the pixel shader
e Shadow Filtering
— Only run costly filter in possible penumbra regions
e Many others like these...

GameDevelopers
Conference

Shadow Filtering with ps_3_0

e Only do expensive filtering in areas
likely to be penumbra regions

— Dynamic flow control in pixel shader

« Can mask with a variety of values (no
light or full light means no penumbra!)
— N-L
— Projective Cookie texture (aka Gobo)
— Edge-filtered shadow map

GameDevelopers

Conference

Simple example scene

Shadow Depth Map

"

Shadow Map Edges

GameDevelopers

Conference

Mask off expensive filtering

N-L<O Gobo ==0

Only the white
pixels execute the
expensive path

Union of
all three
masks

Shadow
Edge Filter

GameDevelopers

Conference

HLSL Shader With Early-Outs

...Compute projective coordinates and N.L...

if (dot(lightval, float3(1,1,1)) == 0) {
return 0;
}

else

{
...Sample edge map...

if (edgevVal == 0) //compute hard shadows if we’re not near an edge
{
shadowMapVal = tex2Dlod (ShadowSampler, projCoords) ;
inLight = (dist < shadowMapVal) ;
percentInlLight = dot(inLight, 0.25f);
return (percentInlLight * lightVal);
}
else
{
randRot = BX2(tex2Dlod(RandRotSampler, float4 (vPos * g vFullTexelOffset,0,0)));
for (int i=0; i<12; i++)
{

...Do each expensive shadow sample...
}
return (percentInLight * lightVval);

GameDevelopers

Conference

Resulting Assembly

mul rO, r0, rl.z

dp3 rl.z, r0O, c5.w
cmp rl.z, -rl abs.z, c5.w, c5.z
if ne rl.z, -rl.z
mov oCO0, c5.z
else
rcp r5.z, rl.w
rcp rl.w, vl.w
mul r2.xy, rl.w, vl
mov r2.z, c2.x
texldl rl, r2.xyzz, sO
cmp rl.w, -rl abs.x, c5.w, c5.z
if ne rl.w, -rl.w
mov r2.w, c5.z
texldl rl, r2.xyww, s2
mad rl, r5.z, cl.x, -rl
cmp rl, rl, c5.z, c5.w
dp4 rl.w, rl, c6.x
mul oCO, r0, rl.w
else
mul rl.xy, vPos, c4
...130 instructions...
mul oCO, r0, rl.w
endif

endif

GameDevelopers

Conference

Aliasing due to Conditionals

o Conditionals in pixel shaders can cause
aliasing!

 You want to avoid doing a hard conditional
with a quantity that is key to determining
your final color

— Do a procedural smoothstep, use a pre-filtered
texture for the function you’re expressing or
bandlimit the expression

— This is a fine art. Huge amounts of effort go into
this in the offline world where procedural
RenderMan shaders are a staple

e On ps_2_a and ps_3_0, you can find out the
screen space derivatives of quantities in the
shader for this purpose.

GameDevelopers

Conference

Shader Antialiasing

« Computing derivatives (actually differences) of shader quantities with respect
to screen x, y coordinates is fundamental to procedural shading

« LOD is calculated automatically based on a 2x2 pixel quad, so you don’t
generally have to think about it, even for dependent texture fetches

e The HLSL dsx (), dsy () derivative intrinsic functions, available when
compiling for ps_2_a and ps_3_0, can compute these derivatives

ds dt dr
P

| dx dx dx
X, [

ds dt dr P
dy dy dy

4

« Use these derivatives to antialias your procedural shaders or
e Pass results of dsx() and dsy () to texnD(s, t, ddx, ddy)

GameDevelopers

Conference

Derivatives and Dynamic Flow Control

e The result of a gradient calculation on a
computed value (i.e. not an input such as a
texture coordinate) inside dynamic flow control
is ambiguous when neighboring pixels in a 2x2
quad may go down different paths

e Hence, nothing that requires a derivative of a
computed value may exist inside of dynamic
flow control

— This includes most texture fetches, dsx () and dsy ()

- texldl and texldd work since you can compute the

LOD or derivatives outside of the dynamic flow
control

e RenderMan has similar restrictions

GameDevelopers

Conference

Derivatives and Dynamic Flow Control

float edge = tex2D (EdgeSampler, oTex0) .r;
float2 duvdx = ddx (oTexO0) ;
float2 duvdy = ddy (oTexO0) ;

if (edge > 0)

{
return tex2D (BaseSampler, oTex0, duvdx, duvdy);

}

else

{
return 0; ,

}

texld r0, v0, sl
cmp rO.w, -rO0.x, c0.x, cO.y
dsx r0O.xy, vO
dsy rl.xy, vO
if ne rO.w, -rO.w
texldd oCO, vO, sO, r0O, rl
else
mov oCO0, c0.x
endif

GameDevelopers

Conference

Summary

e Vertex Shaders
— Vertex Textures
— Flow control

e Pixel Shaders

— Flow control

— Optimization
 Shadow Mapping

— New functionality
« vPos for interleaved sampling

GameDevelopers

Conference

Acknowledgements

e Big thanks to John Isidoro, Natalya
Tatarchuk and Dan Ginsburg for
many of the examples used in this
presentation

% |

GameDevelopers

Conference

References

e [KellerO1] Alexander Keller and Wolfgang
Heidrich, “Interleaved Sampling,”
Eurographics Rendering Workshop 2001.

e [Reeves87] William T. Reeves, David H.
Salesin, and Robert L. Cook, “"Rendering
Antialiased Shadows with Depth Maps’,
SIGGRAPH, 1987, pp. 283-291.

&

http://www.cs.ubc.ca/~heidrich/Projects/InterleavedSampling/
http://www.cs.ubc.ca/~heidrich/Projects/InterleavedSampling/

	3.0 Shaders
	Outline
	3.0 Vertex Shaders
	Vertex Texturing
	Vertex Texturing Details
	vs_3_0 Outputs
	Semantic Linkage
	Connecting VS to PS
	vs_3_0 Semantic Declaration
	Dynamic Flow Control
	Hardware Parallelism
	Pixel Shaders
	Input Registers
	vFace
	Pixel Shader Loop Register (aL)
	Looping and HLSL
	Known bounds on iteration
	Resulting Assembly
	Returning
	Symmetric returns
	vPos
	Interleaved Sampling
	Light Shafts with Interleaved Sampling
	Light Shafts with Interleaved Sampling
	Spatially-varying PCF Offsets
	Percentage Closer Filtering
	Irregular Filter Kernel
	Spatially-Varying Rotation
	Obvious Early-Out Optimizations
	Shadow Filtering with ps_3_0
	Simple example scene
	Mask off expensive filtering
	HLSL Shader With Early-Outs
	Resulting Assembly
	Aliasing due to Conditionals
	Shader Antialiasing
	Derivatives and Dynamic Flow Control
	Derivatives and Dynamic Flow Control
	Summary
	Acknowledgements
	References

