
Advanced Visual Effects
with Direct3D®

Presenters: Cem Cebenoyan, Sim Dietrich, Richard Huddy,
Greg James, Jason Mitchell, Ashu Rege, Guennadi Riguer, Alex
Vlachos and Matthias Wloka

Today’s Agenda
• DirectX® 9 Features

– Jason Mitchell & Cem Cebenoyan

Coffee break – 11:00 – 11:15

• DirectX 9 Shader Models
– Sim Dietrich & Jason L. Mitchell

Lunch break – 12:30 – 2:00

• D3DX Effects & High-Level Shading Language
– Guennadi Riguer & Ashu Rege

• Optimization for DirectX 9 Graphics
– Matthias Wloka & Richard Huddy

Coffee break – 4:00 – 4:15

• Special Effects
– Alex Vlachos & Greg James

• Conclusion and Call to Action

DirectX® 9 Features

Jason Mitchell
JasonM@ati.com

Cem Cebenoyan
CCebenoyan@nvidia.com

Outline
• Feeding Geometry to the GPU

– Vertex stream offset and VB indexing
– Vertex declarations
– Presampled displacement mapping

• Pixel processing
– New surface formats
– Multiple render targets
– Depth bias with slope scale
– Auto mipmap generation
– Multisampling
– Multihead
– sRGB / gamma
– Two-sided stencil

• Miscellaneous
– Asynchronous notification / occlusion query

Feeding the GPU

In response to ISV requests, some key In response to ISV requests, some key
changes were made to DirectX 9:changes were made to DirectX 9:

• Addition of new stream component types
• Stream Offset
• Separation of Vertex Declarations from

Vertex Shader Functions
• BaseVertexIndex change to DIP()

New stream component types
• D3DDECLTYPE_UBYTE4N

– Each of 4 bytes is normalized by dividing by 255.0
• D3DDECLTYPE_SHORT2N

– 2D signed short normalized (v[0]/32767.0,v[1]/32767.0,0,1)
• D3DDECLTYPE_SHORT4N

– 4D signed short normalized (v[0]/32767.0,v[1]/32767.0,v[2]/32767.0,v[3]/32767.0)
• D3DDECLTYPE_USHORT2N

– 2D unsigned short normalized (v[0]/65535.0,v[1]/65535.0,0,1)
• D3DDECLTYPE_USHORT4N

– 4D unsigned short normalized(v[0]/65535.0,v[1]/65535.0,v[2]/65535.0,v[3]/65535.0)
• D3DDECLTYPE_UDEC3

– 3D unsigned 10-10-10 expanded to (value, value, value, 1)
• D3DDECLTYPE_DEC3N

– 3D signed 10-10-10 normalized & expanded to (v[0]/511.0, v[1]/511.0, v[2]/511.0, 1)
• D3DDECLTYPE_FLOAT16_2

– Two 16-bit floating point values, expanded to (value, value, 0, 1)
• D3DDECLTYPE_FLOAT16_4

– Four 16-bit floating point values

Vertex Stream Offset
• New offset in bytes specified in
SetStreamSource()

• Easily allows you to place multiple objects in
a single Vertex Buffer
– Objects can even have different structures/strides

• New DirectX 9 driver is required
– DirectX 9 drivers must set D3DDEVCAPS2_STREAMOFFSET

• Doesn’t work with post-transformed vertices
• This isn’t an excuse for you to go and make

one big VB that contains your whole world

Vertex Stream Offset Example
32 bits32 bits

color

float3

color

float3

…

float3

color

float3

float3

color
…

float3 float3

float3

color

float3

float2

…

V
er

te
x

Ty
pe

 1
V

er
te

x
Ty

pe
 1

V
er

te
x

Ty
pe

 2
V

er
te

x
Ty

pe
 2

V
er

te
x

Ty
pe

 3
V

er
te

x
Ty

pe
 3

……

float3

…

float2

float3

float2

Vertex Declarations
• The mapping of vertex stream components to vertex

shader inputs is much more convenient and flexible in
DirectX 9

• New concept of Vertex DeclarationDeclaration which is separate
from the FunctionFunction

• Declaration controls mapping of stream data to
semantics

• Function maps from semantics to shader inputs and
contains the code

• Declaration and Function are separate, independent
states

• Driver matches them up at draw time
– This operation can fail if function needs data the declaration

doesn’t provide

Semantics
• Usual Stuff:

– POSITION, BLENDWEIGHT, BLENDINDICES, NORMAL, PSIZE,
TEXCOORD, COLOR, DEPTH and FOG

• Other ones you’ll typically want for convenience:
– TANGENT, BINORMAL

• Higher-Order Primitives and Displacement mapping:
– TESSFACTOR and SAMPLE

• Already-transformed Position:
– POSITIONT

• Typically use TEXCOORDn for other engine-specific things
• Acts as symbol table for run-time linking of stream data to

shader or FF transform input

Vertex Declaration
Stream 0Stream 0 Stream1

Vertex layout

pos tc0 Declarationnorm pos tc0 norm

vs 1.1
dcl_position v0
dcl_normal v1
dcl_texcoord0 v2

mov r0, v0
…

VS_OUTPUT main (
float4 vPosition : POSITION,
float3 vNormal : NORMAL,
float2 vTC0 : TEXCOORD0)
{

…
}

asm: HLSL:

Creating a Vertex Declaration

Pass and array of D3DVERTEXELEMENT9
structures to CreateVertexDeclaration():

struct D3DVERTEXELEMENT9
{

Stream; // id from setstream()
Offset; // offset# verts into stream
Type; // float vs byte, etc.
Method; // tessellator op
Usage; // default semantic(pos, etc)
UsageIndex // e.g. texcoord[#]

}

Example Vertex Declaration
Array of Array of D3DVERTEXELEMENT9 structures:structures:

D3DVERTEXELEMENT9 mydecl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0},
{ 0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_NORMAL, 0},
{ 0, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0},
{ 1, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 1},
{ 1, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_NORMAL, 1},
{ 1, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 1},
{ 2, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 2},
{ 2, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_NORMAL, 2},
{ 2, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 2},
D3DDECL_END()

};

StreamStream OffsetOffset

TypeType MethodMethod UsageUsage
Usage Usage
IndexIndex

Creating a Vertex Shader Declaration
• Vertex StreamStream

– Pretty obvious
• DWORD aligned OffsetOffset

– Hardware requires DWORD aligned - Runtime validates
• Stream component TypeType

– As discussed earlier, there are some additional ones in DX9
•• MethodMethod

– Controls tessellator. Won’t talk a lot about this today
•• UsageUsage and Usage IndexUsage Index

– Think of these as a tuple:
• Think of D3DDECLUSAGE_POSITION, 0 as PosPos00
• Think of D3DDECLUSAGE_TEXCOORD, 2 as TexTex22

– A given (UsageUsage, Usage IndexUsage Index) tuple must be unique
• e.g. there can’t be two PosPos00’s

– Driver uses this tuple to match w/ vertex shader func
• D3DDECL_END() terminates declaration

Matching Decls to Funcs
• New dcl instructions

• These go at the top of the code of allall shaders in DX9,
even vs.1.1even vs.1.1

• These match the (UsageUsage, Usage IndexUsage Index) tuples in the
vertex declaration

• Every dcl in the vertex shader func must have a
(UsageUsage, Usage IndexUsage Index) tuple in the current vertex
declaration or DrawPrim will fail

• HLSL compiler generates dcl instructions in bytecode
based upon vertex shader input variables

• dcls are followed by shader code

• More on this in shader section later…

SetFVF()

• SetVertexShaderDeclaration() and
SetFVF() step on each other

• Think of SetFVF() as shorthand for
SetVertexShaderDeclaration() if you
have a single stream that happens to follow
FVF rules

DrawIndexedPrimitive
HRESULT
IDirect3DDevice9::DrawIndexedPrimitive(
D3DPRIMITIVETYPE PrimType,
INT BaseVertexIndex,INT BaseVertexIndex,
UINT MinVertexIndex,
UINT NumVertices,
UINT startIndex,
UINT primCount);

HRESULT IDirect3DDevice9::SetIndices(
INT BaseVertexIndexINT BaseVertexIndex,
IDirect3DIndexBuffer9* pIndexData);

• Does not require a DirectX 9 driver

Vertex Buffer Indexing

Vertex Buffer Index Buffer

Rendered
Vertices

Indices
Fetched

BaseVertexIndex StartIndex

MinVertexIndex

Function of
primCount
& PrimType

NumVertices

Higher Order Primitives

• N-Patches have explicit call to enable
and set tessellation level
– SetNPatchMode(float* nSegments)

• Argument is number of segments per edge
of each triangle

• Replaces previous renderstate
• Still captured in stateblocks

Displacement Mapping

• Technique to add geometric detail by displacing
vertices off of a mesh of triangles or higher order
primitives

• Fits well with application LOD techniques
• But is it an API feature or an application

technique?
• If the vertex shader can access memory, does

displacement mapping just fall out?

Displacement Mapping

Base MeshLOD1LOD2LOD3LOD4

The coming unification…
• As many of you have asked us: What’s the What’s the

difference between a surface and a vertex difference between a surface and a vertex
buffer anyway?buffer anyway?

• As we’ll glimpse in the next section, the 3.0
vertex shader model allows a fairly general
fetch from memory

• Once you can access memory in the vertex
shader, you can do displacement mapping

• There is a form of this in the API today:
Presampled Displacement Mapping

Simple example

0

9

18

27

36

45

1

10

19

28

37

46

2

11

20

29

38

47

8

17

26

35

44

53

7

16

25

34

43

52

6

15

24

33

42

51

3
4

5

12
13

14

Presampled Displacement Mapping

• Provide displacement
values in a
“linearized” texture
map which is
accessed by the
vertex shader

11 22 33

v2

55 66 77

88 99

1010
v1

v0
44

New Surface Formats

• Higher precision surface formats
– D3DFMT_ABGR8
– D3DFMT_ABGR10
– D3DFMT_ABGR16
– D3DFMT_ABGR16f
– D3DFMT_ABGR32f

• Order is consistent with shader masks
• Note: ABGR16f format is s10e5 and has

max range of approx +/-32768.0

Typical Surface Capabilities (March 2003)

• Format Filter Blend
• AGBR8 ➼➼ ➼➼

• ABGR10 ➼➼ ➼➼

• ABGR16 ➼➼ ➻➻

• ABGR16f ➻➻ ➻➻

• ABGR32f ➻➻ ➻➻

• Use CheckDeviceFormat() with
– D3DUSAGE_FILTER and D3DUSAGE_ALPHABLEND

Higher Precision Surfaces

• Some potential uses
– Deferred shading
– FB post-processing
– HDR
– Shadow maps

• Can do percentage closer filtering in the pixel shader
• Multiple samples / larger filter kernel for softened

edges

Higher Precision Surfaces

• However, current hardware has these
drawbacks:
–– Potentially slow performance, due to large Potentially slow performance, due to large

memory bandwidth requirementsmemory bandwidth requirements
–– Potential lack of orthogonality with texture Potential lack of orthogonality with texture

typestypes
–– No blendingNo blending
–– No filteringNo filtering

• Use CheckDeviceFormat() with
– D3DUSAGE_FILTER and D3DUSAGE_ALPHABLEND

Multiple Render Targets

• Step towards rationalizing textures and
vertex buffers

• Allow writing out multiple values from a
single pixel shader pass
– Up to 4 color elements plus Z/depth
– Facilitates multipass algorithms

Multiple Render Targets

• These limitations are harsh:
– No support for FB pixel ops:

• Channel mask, α-blend, α-test, fog, ROP, dither
• Only z-buffer and stencil ops will work

– No mipmapping, AA, or filtering
– No surface Lock()

• Most of these will work better in the next
hardware generation

SetRenderTarget() Split

• Changed to work with MRTs
• Can only be one current ZStencil target
• RenderTargetIndex refers to MRT
• IDirect3DDevice9::SetRenderTarget(
DWORD RenderTargetIndex,
IDirect3DSurface9* pRenderTarget);

• IDirect3DDevice9::SetDepthStencilSur
face (IDirect3DSurface9*
pNewZStencil);

Depth Bias
• Bias = m * D3DRS_ZSLOPESCALE + D3DRS_ZBIAS

– where, m is the max depth slope of triangle
m = max(abs(∂z / ∂x), abs(∂z / ∂y))

• Cap Flag
– D3DPRASTERCAPS_SLOPESCALEDEPTHBIAS

• Renderstates
– D3DRS_DEPTHBIAS, <float>
– D3DRS_SLOPESCALEDEPTHBIAS, <float> -new

• Important for depth based shadow buffers and
overlaid geometry like tire marks

Automatic Mip-map Generation

• Very useful for render-to-texture effects
– Dynamic environment maps
– Dynamic bump maps for water, etc.

• Leverages hardware filtering
– That means it’s fast, and done in whatever path the

driver decides is optimal for this piece of hardware

• Most modern GPUs can support this feature

Automatic Mip-map Generation
• Checking Caps

– D3DCAPS2_CANAUTOGENMIPMAP
• Mipmaps can be auto-generated by hardware for

any texture format (with the exception of DXTC
compressed textures)

• Use D3DUSAGE_AUTOGENMIPMAP when creating
the texture

• Filter Type
– SetAutoGenFilterType(D3DTEXF_LINEAR);

• Mip-maps will automatically be generated
– Can force using GenerateMipSubLevels()

Scissor Rect

• Just after pixel shader
• API:

– D3DDevice9::SetScissorRect(*pRect);
– D3DDevice9::GetScissorRect(*pRect);
– D3DRS_SCISSORRECTENABLE

• CAP:
– D3DPRASTERCAPS_SCISSORTEST

Multisample Buffers
• Now supports separate control of
• Number of samples/pixel:

– D3DMULTISAMPLE_TYPE
– indicates number of separately addressable

subsamples accessed by mask bits
• Image quality level:

– DWORD dwMultiSampleQuality
– 0 is base/default quality level
– Driver returns number of quality levels

supported via CheckDeviceMultisample()

Multihead

• All heads in a multihead card can be driven
by one Direct3D device
– So video memory can be shared

• Fullscreen only
• Enables dual and triple head displays to use

same textures on all 3 display devices

Multihead
• New members in D3DCAPS9

– NumberOfAdaptersInGroup
– MasterAdapterOrdinal
– AdapterOrdinalInGroup

• One is the MasterMaster head and other heads on the
same card are SlaveSlave heads

• The master and its slaves from one multi-head
adapter are called a GroupGroup

• CreateDevice takes a flag
(D3DCREATE_ADAPTERGROUP_DEVICE) indicating
that the application wishes this device to drive all
the heads that this master adapter owns

Multihead Examples

10AdapterOrdinalInGroup

00MasterAdapterOrdinal

02NumberOfAdaptersInGroup

10Adapter Ordinal

Real Example
Dual-head

card

210100AdapterOrdinalInGroup

333110MasterAdapterOrdinal

003021NumberOfAdaptersInGroup

543210Adapter Ordinal

Triple-head cardDual-head
card

Single-
head
card

Wacky Example

Constant Blend Color

• An additional constant is now available for
use in the frame-buffer blender

• This is supported in most current hardware
• Set using D3DRS_BLENDFACTOR dword

packed color
• Use in blending via

– D3DBLEND_BLENDFACTOR
– D3DBLEND_INVBLENDFACTOR

sRGB

• Microsoft-pushed industry standard (γ 2.2)
format

• In Direct3D, sRGB is a sampler state, not a
texture format

• May not be valid on all texture formats,
however
– Determine this through CheckDeviceFormat API

sRGB and Gamma in DirectX 9
or

Sampler 0

SRGBTEXTURE
…

Controlled by D3DRS_SRGBWRITEENABLE

…
Pixel

Shader

FB Blender

Frame Buffer

To Display

or

…

or
Sampler 15

SRGBTEXTURE
…

Texture
Samplers

Gamma RampControlled by SetGammaRamp()

DAC

sRGB
• Symptoms of ignoring

gamma:
• Screen/textures may look

washed out
– Low contrast, greyish

• Addition may seem too bright
• Division may seem too dark

– ½ should be 0.73
• User shouldn’t have to adjust

monitor

sRGB
• Problem

– Math in gamma space is not linear (50% + 50% ≠ 1.0)
• Input textures authored in sRGB

– Math in pixel shader is linear (50% + 50% = 1.0)

• Solution
– Texture inputs converted to linear space (rgbγ)

• D3DUSAGE_QUERY_SRGBREAD
• D3DSAMP_SRGBTEXTURE

– Pixel shader output converted to gamma space (rgb1/γ)
• D3DUSAGE_QUERY_SRGBWRITE
• D3DRS_SRGBWRITEENABLE
• Limited to the first element of MET

sRGB
• sRGB defined only for 8-bit unsigned RGB surfaces

– Alpha is linear

• Color clears are linear
• Windowed applications either

– Perform a gamma correction blit
– Or use D3DPRESENT_LINEAR_CONTENT if exposed

• D3DCAPS3_LINEAR_TO_SRGB_PRESENTATION

• Frame buffer blending is NOT correct
– Neither is texture filtering

• D3DX provides conversion functionality

Two-sided Stencil
• Stencil shadows volumes can now be rendered in 1

pass instead of two
– Biggest savings is in transform

• Check caps bit
– D3DSTENCILCAPS_TWOSIDED

• Set new render state to TRUE
– D3DRS_TWOSIDEDSTENCILMODE

• Current stencil ops then apply to CW polygons
• A new set then applies to CCW polygons

– D3DRS_CCW_STENCILFAIL
– D3DRS_CCW_STENCILPASS
– D3DRS_CCW_STENCILFUNC

Discardable Depth-Stencil

• Significant performance boost on some
implementations

• Not the default: App has to ask for
discardable surface in presentation
parameters on Create or it will not happen

• If enabled, implementation need not
persist Depth/Stencil across frames

• Most applications should be able to enable
this

Asynchronous Notification

• Mechanism to return data to app from
hardware

• App posts query and then can poll later for
result without blocking

• Works on some current and most future
hardware

• Most powerful current notification is
“occlusion query”

Occlusion Query

• Returns the number of pixels that survive
to the framebuffer
– So, they pass the z test, stencil test, scissor, etc.

• Useful for a number of algorithms
– Occlusion culling
– Lens-flare / halo occlusion determination
– Order-independent transparency

Occlusion Query – Example
• Create IDirect3DQuery9 object

– CreateQuery(D3DQUERYTYPE_OCCLUSION)

– You can have multiple outstanding queries
• Query->Issue(D3DISSUE_BEGIN)

• Render geometry
• Query->Issue(D3DISSUE_END)
• Potentially later, Query->GetData() to retrieve

number of rendered pixels between Begin and End
– Will return S_FALSE if query result is not available yet

Occlusion Query – Light halos

• Render light’s geometry while issuing
occlusion query

• Depending on the number of pixels passing,
fade out a halo around the light

• If occlusion info is not yet available,
potentially just use the last frame’s data
– Doesn’t need to be perfect

Occlusion Query - Multipass
• A simple form of occlusion culling
• If a rendering equation takes multiple

passes, use occlusion queries around
objects in the initial pass

• In subsequent passes, only render
additional passes on objects where the
query result != 0
– Doesn’t cost perf because occlusion query

around geometry you’re rendering anyway is
“free”

Summary
• Feeding Geometry to the GPU

– Vertex stream offset and VB indexing
– Vertex declarations
– Presampled displacement mapping

• Pixel processing
– New surface formats
– Multiple render targets
– Depth bias with slope scale
– Auto mipmap generation
– Multisampling
– Multihead
– sRGB / gamma
– Two-sided stencil

• Miscellaneous
– Asynchronous notification / occlusion query

	Advanced Visual Effects with Direct3D®
	Today’s Agenda
	DirectX® 9 Features
	Outline
	Feeding the GPU
	New stream component types
	Vertex Stream Offset
	Vertex Stream Offset Example
	Vertex Declarations
	Semantics
	Vertex Declaration
	Creating a Vertex Declaration
	Example Vertex Declaration
	Creating a Vertex Shader Declaration
	Matching Decls to Funcs
	SetFVF()
	DrawIndexedPrimitive
	Vertex Buffer Indexing
	Higher Order Primitives
	Displacement Mapping
	Displacement Mapping
	The coming unification…
	Simple example
	Presampled Displacement Mapping
	New Surface Formats
	Typical Surface Capabilities (March 2003)
	Higher Precision Surfaces
	Higher Precision Surfaces
	Multiple Render Targets
	Multiple Render Targets
	SetRenderTarget() Split
	Depth Bias
	Automatic Mip-map Generation
	Automatic Mip-map Generation
	Scissor Rect
	Multisample Buffers
	Multihead
	Multihead
	Multihead Examples
	Constant Blend Color
	sRGB
	sRGB and Gamma in DirectX 9
	sRGB
	sRGB
	sRGB
	Two-sided Stencil
	Discardable Depth-Stencil
	Asynchronous Notification
	Occlusion Query
	Occlusion Query – Example
	Occlusion Query – Light halos
	Occlusion Query - Multipass
	Summary

