D3DX Effects and the
DirectX 9 High-Level
Shading Language

or How I Learned to Stop Worrying and Love Shaders

#VIDIA. d |

Ashu Rege Guennadi Riguer

ARege@dnvidia.com GRiguer@ati.com

Conference Make Better Gamss,

— ol

Outline

Current Game Production Pipeline
Why HLSL and FX

FX-enabled Production Pipeline
HLSL and FX Overview and Concepts
FX Demos

High-Level Shader Language
— Language Constructs

— Functions

— Semantics

e PS 1.x Shaders In HLSL
e HLSL Shader Examples
e HLSL Optimizations

Conference Make Better Gamss,

m—— 3 e T
Typical Production Pipeline

Programmers
9 it DCC t I Artists create models,
WrLf f OOl (Maya, Max, Softimage, ...) TR, 05, e 17
assembly for ’ oy
different DCC tool of choice
hardware
Scene exporter plug-in " DcCImage
f= '
ASM Models, Textures, Maps, ... Not the same!
Shaders '
(HW1)

4 l Game Image
Scene manager

I App Scene Manager
ASM hard-coded to choose
Shaders at run-time
(HW2) the appropriate ASM
- = shaders + state
Appllcatlon (game, renderer, ...) for the hardware

Conference Make Better Gamss,

Typical Production Pipeline

e Programmers write game
engine/toolset and shaders

— Develop a selection of assembly shaders
for artists

— Integrate shaders into engines

— Combine various shaders + states to
create effects

— Develop different versions of shaders for
different hardware targets

— Lather, rinse, repeat

Conference Make Better Gamss,

— hSaaniiiae. 00

Typical Production Pipeline

o Artists create content
— Models, textures etc. created in DCC tools

— Exported to engine or custom viewer for
preview

— Programmer-developed effects + Artist-
created content visualized in engine or
viewer

— Identify improvements and problems
— Lather, rinse, repeat

Conference Make Better Gamss,

r— ol

What are the Problems?

e Programmers are good at writing code

— But writing and debugging long assembly
shaders is a pain! (Hello Pixel Shader 2.0!)

— Hard-coded assembly tedious to modify and
maintain

— Reuse of assembly shaders limited

Conference Make Better Gamss,

— ol

What are the Problems?

e Artists are good at making stuff look cool
— But not necessarily at writing assembly

 Writing shaders is a creative process —
artist input is critical

 Back-and-forth time-consuming process

Conference Make Better Gamss,

e e i i

What is the Solution?

 High-level Shading Languages

— High-level Shading Languages make
shader creation accessible to everyone,
especially artists

— Eliminates painful authoring, debugging
and maintenance of long assembly shaders

— Many artists, especially from film studios,
familiar with Renderman or variants

— DirectX 9 HLSL provides syntax similar to
Renderman for shader authoring

Conference Make Better Gamss,

P — o ol =00
HLSL Example

Assembl HLSL

float4 cSpec = pow(max(0, d H)),

dp3 r0, r0, r1 phongEXxp).xxx; |

max rl.x, ¢5.x, r0. float4 cPlastic = Cd * (f Cs *

pow r0.x, r1.x, c4.x cSpec;

mul r0, c3.x, r0.x
mov rl, c2

add r1,cl,rl

mad r0, c0.x, r1, r0

Simple Blinn-Phong
shader expressed in
both assembly and
HLSL

Conference Make Better Gamss,

p— el 0
We are Not Home Yet!

e In an ideal world:

— If the artist wants a cool new effect, (s)he should be
able to create it or load it into the DCC package of
their choice, tweak its parameters and view it in both
the DCC tool and the engine

— You want WYSIWYG across BOTH the DCC package
and the game engine

— Eliminate multiple iterations caused by differences in
the effect in different environments

— You want one mechanism to describe an entire effect
for multiple hardware targets

Conference Make Better Gamss,

P — e ol @00
What are the Problems? — Part 2

e HLSL shaders not the full answer...

— Only describe part (vertex or pixel shader) of one
pass of the entire effect

— We also need the shading context
— An effect comprises more than just shaders

¢ An entire collection of render states, texture states, ...

* A mechanism to express the same shading idea across
different hardware and API’s.

— Everything else required to show it correctly in a

game engine AND a DCC application such as
MAX/Maya/SoftImage/...

Conference Make Better Gamss,

R — ol = 020
What is the Solution? — Part 2

e FX file format and FX runtime API
— Originally introduced in Dx8, extensively modified
and extended in Dx9.
e Everthing we need

— FX file contains HLSL and/or assembly vertex and
pixel shaders

— Parameters that can be exposed/tweaked
— Fixed function state
— Other render, texture, etc. states

— Multiple implementations (fechnigues) for
targeting different hardware

— Techniques can be single or multi-pass

Conference Make Better Gamss,

m—— 3 e T
Typical Production Pipeline

Programmers
9 it DCC t I Artists create models,
WrLf f OOl (Maya, Max, Softimage, ...) TR, 05, e 17
assembly for ’ oy
different DCC tool of choice
hardware
Scene exporter plug-in " DcCImage
f= '
ASM Models, Textures, Maps, ... Not the same!
Shaders '
(HW1)

4 l Game Image
Scene manager

I App Scene Manager
ASM hard-coded to choose
Shaders at run-time
(HW2) the appropriate ASM
- = shaders + state
Appllcatlon (game, renderer, ...) for the hardware

Conference Make Better Gamss,

i — el 0
FX-Enabled Production Pipeline

Artists assign

Programmers FX files
a"d/°_: a;t)'(StS DCC tool (Maya, Max, Softimage, ...) to scene objects
Write

ffect and tweak parameters
srees FX material plug-in for each object
in real-time

Scene exporter plug-in J/I——\Ng DCC Image

[
= v
EX Models, Textures, Maps, Same Image!
fil FX effects + parameters '
iles

Game Image

\ 4
Scene manager
- For any FX, App Scene
—_— Manager chooses
D at run-time
the appropriate

Application (game, renderer, ...) LEENAIGIE

for the hardware

Conference Make Better Gamss,

Effect File Structure

e An effect is made up of multiple rendering

algorithms (technigues) each made up of one
or more passes

o Effect File Structure:

Variable declarations
Technique 1

e Pass 1

e Passn

Technique n
e Pass1

e Passn

Conference Make Better Gamss,

P —

TR

FX Example — Diffuse Color

technique Simple

{
pass p0

{
Lighting = true;

LightEnable[0] = true;

ZEnable = true;

ZWriteEnable = true;

/] Assign diffus
ColorOp[0]

= SelectAr

A technique is made up of passes

An effect is made up of techniques

// Enable Lighting

// Enable Light 0

// Enable DepthTest

// Enable Depth Buffer Writes

r to be used

A pass can set render states

ColorArg1[0] = Texture;
ColorArg2[0] = Diffuse;

AlphaOp[0

} // end pass p0
} // end technique Simple

electArg2;
AlphaArgl[0] = Te :
AlphaArg2[0] = Diffuse;

... texture stage states, ...

Comference ke petter Games.
Conference

P —

TR

FX Example - Texturing

texture diffuseTexture : DiffuseMap;

technique Simple e
{
pass p0 You can declare variables outside a
{ technique...
Texture[0] = <diffuseTexture>; /] Assign texture to stage 0

MinFilter[0] = Linear; /] Set filter values...
MagFilter[0] = Linear;
MipFilter[0] = Linear;
// Modulate texture with diffyse color
ColorOp[0] = Modulate;
ColorArgl1[0] = Texture;
ColorArg2[0] = Diffuse; ...and use them inside the passes of any technique
AlphaOp[0] = SelectArg2;

AlphaArgl[0] = Texture;

AlphaArg2[0] = Diffuse;

} // end pass p0
} // end technique SimpleTexture

GameDevelo
Conference

~ nakeBetter Games.

R
FX Example — HLSL functions

struct vertexIn {

float4 Position : ; /] position in object space
float3 Normal : ; // normal in object space
float2 TexCoord : ;

float3 T: ; // tangent in object space
float3 B : ; // binormal in object space

}i
p—— You can define struct types...

struct vertexOut { -

float4 Position : ; // position in clip space
float4 TexCoordO : ; /] texcoords for diffuse map
float4 TexCoord1 : ; /] texcoords for normal map
float4 LightVector : ; /] interpolated light vector

¥

vertexOut DiffuseBumpVS(vertexIn IN, uniform float4x4 WorldViewProj,

uniform float4x4 WorIdIMatrWﬂoam LightPos)
{
vertexOut OUT; ...and use them in HLSL functions

/] transform position to clip space
OUT.Position = mul(WorldViewProj, IN.Position);
return OUT;

Conference Make Better Gamss,

FX Example — HLSL functions

float4x4 WorldIMatrix : ; /] World Inverse matrix
float4x4 wvpMatrix : ;

float4 lightPos :

<

string Object = "PointLight";
string Space = "World";
> = { 100.0f, 100.0f, 100.0f, 0.0f };

technique DiffuseBump

{ HLSL function invocation
pass p0

{

Zenable = true;

ZWriteEnable = true;

CullMode = None;

VertexShader = compile vs_1_1 DiffuseBumpVS(wvpMatrix,WorldIMatrix,lightPos);

}// el;.ci pass p0

} // end teChnique DiffuseBump Specify target: vs_1_1, ps_1_1,
ps_2_0, ...

Conference Make Better Gamss,

e TN
FX Example — Assembly Shaders

technique DiffuseBump

{
pass p0

{

Zenable = true;

ZWriteEnable = true;

CullMode = None;
VertexShaderConstant[4] = <wvpMatrix>;
VertexShader =

asm

{

vs_1 1

m4x4 oPos, v0, c4 // pos in screen space.
}i
} // end pass p0

} // end technique SimpleTexture Old skool assembly shader

Comference ke petter Games.
Conference

r_ T w_ '_
Making Connections

FX Parameters

O diffuseMap
FX . .
@ WorldViewMatrix
Effect 1
| - SpotLightPosition
@ WorldviewMat
FX
@ EnvironmentMap
Effect 2
N . NormalMap

How do we connect parameters in the FX files to the scenes in the game?

GameDevelopers
Conference

P—

Semantics

texture diffuseTexture : DiffuseMap;

Semantics

float4 spotlightlDirection : Direction
<

string Object = "SpotLight";

string Space = "DevicelLightSpace";
> = {1.0f, 0.0f, 0.0f, 0.0f};

GameDevelopers
Conference

Semantics

texture diffuseTexture : ;

e Each variable can optionally have a semantic

e Semantics are essentially user-defined strings

e Semantics provide a ‘meaning’ to the variable

e Application can query a variable for its semantic

e Application can use semantic to set appropriate value
for a variable

Conference Make Better Gamss,

e TR
Annotations

texture normalizationCubeMap

< Annotations

string File = “normalize.dds”; <«
>7

float reflStrength

<
string gui = "slider";
float uimin = 0.1;
float uimax = 1.0;
float uistep = 0.05;
string Desc = "Edge reflection";
float min = 0.1;
float max = 1.0;
> = 1.0;

Comference ke petter Games.
Conference

— hfeeauiiia.

Annotations

texture normalizationCubeMap
<

string File = “"normalize.dds”;
>

e Each variable can optionally have multiple annotations
e Annotations are essentially user-defined strings

e Annotations provide more information about the
variable to the application

e Application can query a variable for its annotations

o Application can use annotations to set appropriate
value for a variable

Conference Make Better Gamss,

- —

Annotating Techniques

technique BumpyShinyHiQuality
<

float quality = 5.0;

float performance = 1.0;

>;
{

N passpO{...} Annotations for techniques

technique BumpyShinyHiPerf
<

float quality = 1.0;

float performance = 5.0;

>;

{..}

e Annotations can be used to identify characteristics of technique and
other info for the application

Conference Make Better Gamss,

Annotating Passes

technique multiPassGlow

{
pass p0
<
bool renderToTexture = true;
float widthScale = 0.25;
float heightScale = 0.25;
>
{ Annotations for passes
Zenable = true;
bs
by

e Annotations can be used to identify requirements for each
pass and other info for the application such as render to

texture

Conference Make Better Gamss,

g— ol 0

Automatic Parameter Discovery

e Semantics and annotations provide powerful
mechanism for automating parameter
discovery

e What we want: Write the application once
and use any FX effect file without
recompiling the app

e Use semantics and annotations to create a
common language for your engine and FX
effects

e Initial effort to write the parameter discovery
code in your app, after that all debugging is
in the FX files!

Conference Make Better Gamss,

pp— el =
Using FX in Your Application

e Load effect

o Validate technique for hardware

e Detect parameters for technique

e Render Loop (for each object in scene):
— Set technique for the object
— Set parameter values for technique

— For each pass in technique
o Set state for pass
e Draw object

Conference Make Better Gamss,

Conference

Using FX — The FX API

LPD3DXBUFFER pError = NULL;

D3DXCreateEffectFromFile (m pd3dDevice, T("simple.fx"),
NULL, NULL, O, NULL, &m pEffect, &pError);

SAFE RELEASE (pError) ;

UINT iPass, cPasses;
m pEffect->SetTechnique (“Simple") ;

m pEffect->SetVector (“varl", v);

m pEffect->Begin (&cPasses, 0);
for (iPass = 0; iPass < cPasses; iPass++)
{

m pEffect->Pass(iPass) ;

m pMesh->Draw () ;

}
m pEffect->End() ;

Make Better Gamss,

— il 00
High-Level Shader Language
(HLSL)

e C like language with special shader
constructs

e All the usual advantages of high level
languages
— Faster, easier development
— Code re-use
— Optimization

e Industry standard which will run on
cards from any vendor

Conference Make Better Gamss,

p— hSaaniiiae. 00

HLSL Data Types

e Scalar data types
— bool — TRUE or FALSE
— int — 32-bit signed integer
— half — 16-bit floating point value
— float — 32-bit floating point value
— double — 64-bit floating point value

e Support of various types not
guarantied and depends on hardware
implementation

Conference Make Better Gamss,

HLSL Data Types

e Vector types
— By default all 4 components are floats

— Various types already predefined
vector vVar;

vector<float,4> vVar;
float4 vVar;
int2 vVarl;

e Access to vector components

vvVar.x
vVar|[O0]

Conference Make Better Gamss,

— e

HLSL Data Types

e Matrix types
— By default all 4x4 elements are floats
— Various types already predefined

matrix mVar;
matrix<float,4,4> mVar;
floatdx4 vVar;

int2x3 vVarl;

o Access to matrix elements
mVar. m0O, mVar. 11, mVar[0] [0]
mVar. m00 mOl1 m02 mO3, mVar[0]

e Can control matrix orientation

#pragma pack matrix (row major);

Conference Make Better Gamss,

o TN
HLSL Data Types

e Arrays supported
float2 offs2D[5];

e Structs supported
struct VERTEX
{
float3 Pos;
float3 Norm;
float2 TexCoord;

}

Comference ke petter Games.
Conference

— hSaanilia. 00
Type Casts

e Floats can be promoted by replication
vVec3+0.5 ¢ vVec3+float3(0.5,0.5,0.5)

e Vectors and matrices can be downcast
— Picking from left/upper subset
e Structures can be cast to and from

scalars, vectors, matrices and other
structures

Conference Make Better Gamss,

e

Operators

Operators
Arithmetic -+, %, [, %
Prefix/postfix ++, --
Boolean &&, ||, ?:
Unary 1L, - +
Comparison <, >, <= >= ===
Assignment =, -=,+=, *=, [=
Cast (type)
Comma ,
Structure member
Array member [/]

Conference Make Better Gamss,

Operators

o Matrix-vector multiplication is defined
as intrinsic function

e Modulo operator (%) works with
integers and floats

e Vector comparisons work on per-
component basis

e Be careful with integer math

— HLSL emulates integers if not natively
supported, so rounding might produce
different results

Conference Make Better Gamss,

— ol

Constructors

e Constructors can be used to create
and initialize objects like in C++

— Works with all HLSL types
float3 v3 = f£float3(0,0,0);

float4d v4 = float4(0,0,0,0);
floatd4 v4 = float4d4 (v3,0);

e Can initialize members of the
structues

— Casting occurs if number of components
doesn’t match

Conference Make Better Gamss,

Flow Control

e Branching

if (expr) then statement [else statement]

e Loops
do statement while (expr);
while (expr) statement;
for (exprl;expr2;expr3) statement

 Loops are supported in all models
— Unrolled if necessary

Conference Make Better Gamss,

— ol 0

Functions

e C like functions
— HLSL does type checking
— Prototypes are supported
— Arguments passed by value

e Recursion not supported

e Function can use special semantics

e Large number of predefined functions
— Simplify development
— Highly optimized implementation
— Can be overloaded

Conference Make Better Gamss,

Functions

 Function parameters can have
initializers
e Functions can return multiple values

floatd4d foo(in float v,
out float a,
inout float b = 0.5)

14

a v * b;
b v / 2
return (a + Db);

}

Conference Make Better Gamss,

u— el 00

Intrinsic Functions

Various math functions
VS1.1 VS20 PS1.1 PS14 PS 20

degrees, lerp, radians, X X X X X
saturate
abs, clamp, isfinite, isnan, X X X X

max, min, sign

acos, asin, atan, atan2, ceil, X X X
cos, cosh, exp, exp2, floor,

fmod, frac, frexp, isinf,

Idexp, log, log2, log10,

modf, pow, round, rsqrt, sin,

sincos, sinh, smoothstep,

sqrt, step, tan, tanh

Conference Make Better Gamss,

P

Conference

7 e T

Intrinsic Functions

Vector functions
VS1.1 VS20 PS1.1 PS14 PS 20

dot, reflect X X X X X
any, cross, faceforward X X X X
distance, length, lit, X X X

normalize, refract

Matrix functions

VS1.1 VS2.0 PS1.1 PS14 PS 2.0
mul, transpose X X X X X
determinant X X X

Make Better Gamss,

P

Conference

T e T

Intrinsic Functions

Texturing functions
VS1.1 VS2.0 PS1.1 PS14 PS 20

tex1D, tex2D, tex3D, X X X
texCube
tex1Dproj, tex2Dproj, X X

tex3Dproj, texCUBEproj,
tex1Dbias, tex2Dbias,
tex3Dbias, texCUBEbias

clip X X X

Miscellaneous functions

VS11 VS2.0 PS1.1 PS14 PS 2.0
D3DCOLORtoUBYTE4 X X ?

Make Better Gamss,

i — ool 020
HLSL Shader Semantics

 Function arguments and results might
be semantically bound to shader
inputs/outputs
— I.e. POSITION, TEXCOORD1, COLORO
— Meaningful only at top level

e Constants can be bound to registers

matrix worldViewProj : register(cO);

e Samplers can also be bound
sampler noiseSampler : register (sO) ;

Conference Make Better Gamss,

Texture Sampler Declarations

e Textures and samplers have to be declared

— Sampler configuration can be provided for D3DX
Effects use
texture tMarbleSpline;
sampler MarbleSplineSampler = sampler state

{

Texture = (tMarbleSpline);
MinFilter = Linear;
MagFilter = Linear;

MipFilter = Linear;
AddressU = Clamp;
AddressV = Clamp;

};

sampler SimpleSampler;

Conference Make Better Gamss,

— e
Shader Model Support in HLSL

 Right now supports:
-VS1.1
- VS 2.0
- PS1.1-1.3
-PS1.4
- PS 2.0

o Support for other models will be
added in the near future

e PS 1.x can be tricky to use to get the
most out of shaders

Conference Make Better Gamss,

PS 1.x Shaders With HLSL

e HLSL supports PS 1.1-1.4, but there
are some nuances

e HLSL supports almost all capabilities
of each shader model (including
modifiers)

e Functionality of course is limited by
shader model

e Knowledge of assembly is helpful

Conference Make Better Gamss,

Support Of Modifiers In HLSL

Pixel Shaders

e Compiler recognizes and uses
instruction and argument modifiers

a = b*(c*2-1); // mul r0, r0, rl bx2
a = dot(b, (c-0.5£)*2); // dp4 r0, xr0, rl bx2
a = b*(c-0.5f); // mul r0, r0O, rl bias
a = dot(b,c*2); // dp4 r0, r0, rl x2
a = b*(1l-c); // mul r0, r0, 1-rl

a = -b*c; // mul r0, -r0, rl

a = 2*b*c; // mul x2 r0, r0, rl
a = (b+c)*4; // add x4 r0, r0, rl
a = (b+c)/8; // add d8 r0, r0, rl
a = saturate (b+c) ; // add sat r0, r0, rl
a = clamp (b+c,0,1); // add sat r0, r0, rl

Conference Make Better Gamss,

PS 1.1-1.3 Shaders With HLSL

e Range of computed values should be —-1..+1

e Texture coordinates available for
computations should be 0..1

e Texture coordinates are tied to samplers
 Dependent texture read is limited

e In most cases access to .W texture
coordinate is not permitted

 Result masks and argument swizzles are not
reasonable

Conference Make Better Gamss,

pa————— w""
Per-Pixel Diffuse Lighting In

HLSL (PS 1.1 Model)

Conference

sampler normalMap: register (s0);
sampler diffuseCubeMap: register (s3);
float4 vAmbient;

float4 vDiffuse;

floatd4d main(float2 TexCoord : TEXCOORDO,
float3 EnvXform[3] : TEXCOORD

float3 N = tex2D (normalMap, TexCoord) ;
float3 Nworld;

Nworld.x = dot(N*2-1, EnvXform[O0]);
Nworld.y = dot(N*2-1, EnvXform[1l])

Nworld.z = dot(N*2-1, EnvXform[2])

floatd4 diffuse = texCUBE (diffuseCubeMap, Nworld) ;
return (diffuse * vDiffuse + vAmbient);

Make Better Gamss,

— e

Per-Pixel Diffuse Lighting In
HLSL (PS 1.1 Model)

e Compiler recognizes normal transformation,
dependent cube map lookup and translates
into appropriate instructions with modifiers

ps_1_1
tex tO

texm3x3pad tl, t0_bx2
texm3x3pad t2, t0_bx2

texm3x3tex t3, t0 bx2 // Dependent texture read

mad r0O, t3, cl, c0

Conference Make Better Gamss,

pa————— e e i
Per-Pixel Specular Lighting in
HLSL (PS 1.1 Model)

sampler normalMap: register(sO) ;
sampler specularCubeMap: register(s3);
float4 vAmbient;

float4 vSpecular;

float4 main(float4 diffuse : COLOR,
float2 TexCoord : TEXCOORDO,
float4 EnvXform[3] : TEXCOORD1l) : COLOR

float3 N = tex2D (normalMap, TexCoord) ;
float3 Nworld;

Nworld.x = dot(N*2-1, EnvXform[O0])
Nworld.y = dot(N*2-1, EnvXform[l]);
Nworld.z = dot(N*2-1, EnvXform[2]);

float3 Eye;

Eye.x = EnvXform[0].w;
Eye.y = EnvXform[1l].w;
Eye.z = EnvXform[2].w;

float3 R = 2 * dot(Nworld, Eye) * Nworld - Eye * dot(Nworld, Nworld);
float4 specular = texCUBE (specularCubeMap, R);
return (specular * vSpecular + diffuse + vAmbient);

Conference Make Better Gamss,

p— ol 00
Per-Pixel Specular Lighting in
HLSL (PS 1.1 Model)

e Compiler correctly identifies all
operations and translates them into
modifiers and even texm3x3vspec
instruction!

ps 11

tex tO

texm3x3pad tl, t0_bx2

texm3x3pad t2, t0_bx2

texm3x3vspec t3, t0 bx2 // Dependent texture read

mad r0, t3, cl, vO
add r0, r0, cO

Conference Make Better Gamss,

Per-Pixel Anisotropic Lighting

in HLSL (PS 1.1 Model)

Conference

sampler anisoDirMap: register (sO0);
sampler baseMap: register(sl);
sampler anisoLookup: register (s3);
float4 vAmbient;

float4 main(float2 AnisoTexCoord : TEXCOORDO,
float2 BaseTexCoord : TEXCOORD1,
float3 Ltan : TEXCOORD2,
float3 Vtan : TEXCOORD3) : COLOR

float3 anisoDir = tex2D (anisoDirMap, AnisoTexCoord) ;
float4 baseTex = tex2D (baseMap, BaseTexCoord) ;

float2 wv;
v.Xx = dot(anisoDir, Ltan);
v.y = dot(anisoDir, Vtan)

float glossMap = baseTex.a;

float4 aniso = tex2D (anisoLookup, V)
return (baseTex * (aniso + vAmbient) + aniso.a * glossMap) ;

Make Better Gamss,

Per-Pixel Anisotropic Lighting
in HLSL (PS 1.1 Model)

e Again compiler correctly recognizes and
translates dependent texture read operation

ps 11
tex tO
tex tl

texm3x2pad t2, tO
texm3x2tex t3, tO // Dependent texture read

add r0, t3, c0
mul rl.w, t3.w, tl.w
mad r0, r0O, €1, rl.w

Conference Make Better Gamss,

PS 1.4 Shaders With HLSL

e Range of computed values should be —8..+8,
consts —-1..+1

e Texture coordinates available for
computations should be —8..+8

e One level of dependent texture read

e In most cases access to .W texture
coordinate is not permitted

 Right now projective textures don’t work

e Argument swizzles are not reasonable, but
channel replication is fine

Conference Make Better Gamss,

Ghost Shader in HLSL
(PS 1.4 Model)

sampler normMap;
sampler normCubeMap;
sampler lookupMap;
float3 ghostColor;

float4 main(float2 texCoord : TEXCOORDO,
float3 Eye : TEXCOORD1,
float3 envXform[3] : TEXCOORD2) : COLOR

float3 N = tex2D (normMap, texCoord) * 2 - 1;
Eye = texCUBE (normCubeMap, Eye) * 2 - 1;

float3 NN;

NN.x = dot (N, envXform[0]) ;
NN.y dot (N, envXform[l]);
NN.z dot (N, envXform[2]);

float NdotE = dot (NN, Eye);
float ghost = texlD (lookupMap, NdotE) ;
return float4d (ghostColor * ghost, ghost / 2);

Conference Make Better Gamss,

Ghost Shader in HLSL
(PS 1.4 Model)

e Compiler identifies proper modifiers
and uses phase with dependent
texture read operation

ps_1 4

texcrd r0.xyz, t2
texld rl, tO

texld r2, tl

texcrd r3.xyz, t3
texcrd r4.xyz, t4
dp3 r0.x, rl bx2, r0
dp3 r0.y, rl bx2, r3
dp3 r0.z, rl bx2, r4
dp3 r0.xy, r0, r2 bx2
phase

texld r0, rO

mul rl.xyz, r0.x, cO
+mov rl.w, r0.x

mov r0, rl

Conference Make Better Gamss,

e T

Granite Shader

GameDevelopers
Conference

P—
Granite — Vertex Shader

floatdx4 view_matrix;

float4x4 view _proj matrix: register(cO0);

struct VS_OUTPUT

{
float4 Pos: POSITION;
float3 P : TEXCOORDO ;
float3 Peye : TEXCOORD1;
float3 Neye : TEXCOORDZ2;

};

VS_OUTPUT main(float4 Pos: POSITION,
float3 Norm: NORMAL)

VS_OUTPUT Out = (VS_QUTPUT) 0;
Out.Pos = mul(view_proj matrix, Pos);

Out.P = Pos;
Out.Peye = mul (view matrix, Pos);
Out.Neye = mul (view_matrix, Norm);
return Out;

GameDevebperS . MNake Better Games.
Conference

GEPIEE eetli. 0

Granite — Pixel Shader
(PS 2.0 Model) 1/3

float power =

float4 Ks;

float freq = 0.1;
float4 light pos;
float4 Kd;

float4 Ka;

sampler noise_volume;

##define OCTAVES 6

float noise(float3 p)
{
float n = 0;
float k =1
for(int i = 0; i < OCTAVES; i++)
{

.
14

n += tex3D(noise volume, p * k) / k;
k *= 2;

return n / 2.08;

GameDevebperS . MNake Better Games.
Conference

Granite — Pixel Shader
(PS 2.0 Model) 2/3

float4 stone(float seed)

{
float4 colorl = float4(0.68, 0.55, 0.5, 1.0);
float4 color2 float4(0.6, 0.47, 0.4, 1.0);
floatd4 color3 float4(0.55, 0.45, 0.45, 1.0);
float4 colord4 = float4(0.1, 0.1, 0.1, 1.0);
float bl = 0.2;
float b2 = 0.3;

if (seed < bl)
{

return lerp(colorl, color2, smoothstep(0, bl, seed))

}
else if (seed < b2)

{

return lerp(color2, color3, smoothstep(bl, b2, seed));

}

else

{

return lerp(color3, color4, smoothstep(b2, 1.0, seed));

Conference Make Better Gamss,

Granite — Pixel Shader
(PS 2.0 Model) 3/3

float4 main(float3 P: TEXCOORDO,
float3 Neye: TEXCOORD1,
float3 Peye: TEXCOORDZ2Z2) : COLOR

float3 N = normalize (Neye) ;

float3 L = normalize(light pos - Peye);
float3 V = -normalize (Peye) ;

float3 H = normalize(V + L);

float4 base = stone(saturate(noise(P * freq) * 4 - 1.5));

float4 Cd = saturate(dot(N, L)) * Kd * base;
float4 Cs = pow(dot(N, H), power) * Ks;

return saturate((Cd + Ka) * base + Cs);

Conference Make Better Gamss,

— ol 0
HLSL Shader Optimizations

e Vectorize if possible
— Use swizzles when necessary
e Use proper types
— Use float, float3, float4 as appropriate
o Use tex1D for 1D textures
e Use intrinsic functions

e Don’t use dot() to extract vector
components

— Use swizzles instead

Conference Make Better Gamss,

Go Forth and Shade!

e Questions?

Comference ke petter Games.
Conference

	Outline
	Typical Production Pipeline
	Typical Production Pipeline
	Typical Production Pipeline
	What are the Problems?
	What are the Problems?
	What is the Solution?
	HLSL Example
	We are Not Home Yet!
	What are the Problems? – Part 2
	What is the Solution? – Part 2
	Typical Production Pipeline
	FX-Enabled Production Pipeline
	Effect File Structure
	FX Example – Diffuse Color
	FX Example - Texturing
	FX Example – HLSL functions
	FX Example – HLSL functions
	FX Example – Assembly Shaders
	Making Connections
	Semantics
	Semantics
	Annotations
	Annotations
	Annotating Techniques
	Annotating Passes
	Automatic Parameter Discovery
	Using FX in Your Application
	Using FX – The FX API
	High-Level Shader Language (HLSL)
	HLSL Data Types
	HLSL Data Types
	HLSL Data Types
	HLSL Data Types
	Type Casts
	Operators
	Operators
	Constructors
	Flow Control
	Functions
	Functions
	Intrinsic Functions
	Intrinsic Functions
	Intrinsic Functions
	HLSL Shader Semantics
	Texture Sampler Declarations
	Shader Model Support in HLSL
	PS 1.x Shaders With HLSL
	Support Of Modifiers In HLSL Pixel Shaders
	PS 1.1-1.3 Shaders With HLSL
	Per-Pixel Diffuse Lighting in HLSL (PS 1.1 Model)
	Per-Pixel Diffuse Lighting in HLSL (PS 1.1 Model)
	Per-Pixel Specular Lighting in HLSL (PS 1.1 Model)
	Per-Pixel Specular Lighting in HLSL (PS 1.1 Model)
	Per-Pixel Anisotropic Lighting in HLSL (PS 1.1 Model)
	Per-Pixel Anisotropic Lighting in HLSL (PS 1.1 Model)
	PS 1.4 Shaders With HLSL
	Ghost Shader in HLSL(PS 1.4 Model)
	Ghost Shader in HLSL(PS 1.4 Model)
	Granite Shader
	Granite – Vertex Shader
	Granite – Pixel Shader(PS 2.0 Model) 1/3
	Granite – Pixel Shader(PS 2.0 Model) 2/3
	Granite – Pixel Shader(PS 2.0 Model) 3/3
	HLSL Shader Optimizations
	Go Forth and Shade!

