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Where does it all come from?
• Complex pixel shader support (2.0 

and better)
• Multi-GigaPixel fill-rates
• 100’s of millions of triangles per 

second of geometry throughput
• Multi-sample anti-aliasing
• High Quality texture filtering



Where does it all come from?
• So games should be able to run at 

1280x1024 at refresh rate with AA 
and high quality filtering enabled at 
all times…

• Yes?



But where does it all go?
• Too many apps are CPU limited…

– They send too many state changes
– They don’t batch their triangles
– They misuse vertex buffers
– They lock critical resources at bad times

• Many games don’t push graphics as 
hard as they could…
– Which is a shame because reviewers (and 

future gamers) have high end hardware



Last year I suggested this target
• DX9 style mainstream graphics:

– > 0.5 million polys per frame
– < 500 DIP calls
– < 500 VB changes
– < 200 texture changes
– < 200 State change sets
– “Few” SRT calls (that’s single digits...)
– 1 pass per poly is typical, but 2 is sometimes 

smart
– Runs at refresh rate of 80Hz or better
– That’s better than 40 million polys per second

• And nothing goes through the fixed function pipes



Pass Reduction (“PR”)
• Use the most powerful shader

available to reduce the total number 
of passes required to render a given 
thing to a given standard.
– Use ps2.0 to PR 1.x techniques

• Usually n passes -> 1 pass

– Use ps1.4 to PR 1.1 – 1.3 techniques
• Commonly 2 passes -> 1 pass

– Use ps1.x to PR fixed function techniques



General resource management
• Create your most important resources 

first.  That’s targets, shaders, textures, 
VB’s, IB’s etc

• “Most important” is defined as “most 
frequently used”

• Never call Create in your main loop

– So create the main colour and Z buffers 
before you do anything else…

• The “main buffer” is the one through which the 
largest number of pixels pass…



Sorting
• Sort roughly front to back

– There’s a staggering amount of hardware 
devoted to making this highly efficient

• Sort by vertex shader
…or…

• Sort by pixel shader, or 
• sort by texture

• When you change VS or PS it’s good to 
go back to that shader as soon as 
possible…

• Short shaders are faster^2 when sorted



Clearing
• Ideally use Clear once per frame

– Always clear the whole render target
– Always clear colour, Z and stencil together 

unless you can just clear Z/stencil
• Don’t force us to preserve stencil if you don’t 

need it…

• Don’t use 2 triangles to clear…
• Using Clear() is the way to get all the 

fancy Z buffer hardware working for you



Vertex Buffers
• Use the standard DirectX8/9 VB 

handling algorithm with DISCARD & 
NOOVERWRITE etc

• Specify write-only if possible
• Use POOL_DEFAULT if possible
• Roughly 2 – 4 MB for best performance

– This allows large batches
– And gives the driver sufficient granularity 

to manage memory efficiently



Index Buffers
• Treat Index Buffers exactly as if they 

were vertex buffers – except always 
choose the smallest element possible

– i.e. Use 32 bit indices only if you need to
– Use 16 bit indices whenever you can

• Much recent hardware treats Index 
Buffers as ‘first class citizens’

– They don’t have to be copied about before 
the chip gets access

– So keep them out of system memory



Updating Index and Vertex Buffers
• IBs and VBs which are optimally located 

need to be updated with sequential 
DWORD writes.

• AGP memory and LVM both benefit from 
this treatment…



Handling Render States
• Prefer minimal state blocks

– ‘minimal’ means you should weed out any 
redundant state changes where possible

• If 5% of state changes are redundant that’s OK
• If 50% are redundant then get it fixed!

• The expensive state changes:
– Switching between VS and FF 
– Switching Vertex Shader
– Changing Texture



How to draw stuff
• DrawIndexedPrimitive( strip or list )

– Indexing is a big win on real world data
– Long strips beat everything else
– Use lists if you would have to add large 

numbers of degenerate polys to stick with 
strips (more than ~20% means use lists)

– Make sure your VB’s and IB’s are in optimal 
memory for best performance

– Give the card hundreds of polys per call
• Small batches murder your performance



Vertex data
• Don’t scatter it around

– Fewer streams give better cache behaviour
• Compress it if you can

– 16 bits or less per component
– Even if it costs you 1 or 2 ops in the shader…

• Try to avoid spilling into AGP
– Because AGP has high latency

• pow2 sizes help – 32 bytes is best
– Work the cache on the GPU

• Avoid random access patterns where possible 
by reordering vertex data before the main 
loop…

– That’s at app start up or at authoring time



What Is a Batch?
• Every DrawIndexedPrimitive() is a batch

– Submits n number of triangles to GPU
– Same render state applies to all tris in batch
– SetState calls prior to Draw are part of batch

• Assuming efficient use of API
– No Draw*PrimitiveUP()
– DrawPrimitive() permissible if warranted
– No unnecessary state changes

• Changing state means at least two batches



Why Are Small Batches Bad?

• Games would rather draw 1M 
objects/batches of 10 tris each
– versus 10 objects/batches of 1M tris each

• Lots of guesses
– Changing state inefficient on GPUs (WRONG)
– GPU triangle start-up costs (WRONG)
– OS kernel transitions (WRONG)

• Future GPUs will make it better!? Really?



• Test app does…
– Degenerate triangles (no fill cost) 
– 100% PostTnL cache vertices (no xform cost)
– Static data (minimal AGP overhead)
– ~100k tris/frame, i.e., floor(100k/x) draws
– Toggles state between draw calls:

(VBs, w/v/p matrix, tex-stage and alpha states)

• Timed across 1000 frames

Let’s Write Code!
Testing Small Batch Performance

• Theoretical maximum triangle rates!



Measured Batch-Size Performance
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Optimization Opportunities
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Measured Batch-Size Performance
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<130 tris/batch:
- App is GPUGPU--independentindependent
- Completely CPU-limited



CPU-Limited?

• Then performance results only depend on
– How fast the CPU is 

• Not GPU

– How much data the CPU processes
• Not how many triangles per batch!

• CPU processes draw calls (and 
SetStates), i.e., batches

• Let’s graph batches/s!



What To Expect If CPU Limited
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Effects of Different CPU Speeds

Two distinct bands,  
corresponding to 
different CPU speeds
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Effects of Number of Tris/Batch

Straight horizontal
lines: batches/s 
independent of
number of triangles
per batch

batch-size: triangles/batch
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Effects of Different GPUs

Different GPUs
perform similarly;
slight variations
due to different
driver paths

batch-size: triangles/batch
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Measured Batches Per Second
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Side Note: OpenGL Performance
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CPU Limited?
• Yes, at < 130 tris/batch (avg) you are

– completely,
– utterly,
– totally,
– 100% 

– CPU limited!

• CPU is busy doing nothing,
but submitting batches!



How ‘Real’ Is Test App?

• Test app only does SetState, Draw, repeat;
– Stays in CPU cache
– No frustum culling, no nothing
– So pretty much best case

• Test app changes arbitrary set of states
– Types of state changes?
– And how many states change?
– Maybe real apps do fewer/better state changes?



Real World Performance

• 353 batches/frame @  16%       1.4GHz CPU: 26fps
• 326 batches/frame @  18%       1.4GHz CPU: 25fps
• 467 batches/frame @   20%      1.4GHz CPU: 25fps
• 450 batches/frame @   21%      1.4GHz CPU: 25fps
• 700 batches/frame @ 100% (!) 1.5GHz CPU: 50fps
• 1000 batches/frame @ 100% (!) 1.5GHz CPU: 40fps 
• 414 batches/frame @   20% (?) 2.2GHz CPU: 27fps
• 263 batches/frame @   20% (?) 3.0GHz CPU: 18fps
• 718 batches/frame @   20% (?) 3.0GHz CPU: 21fps



Normalized 
Real World Performance
• ~41k batches/s @ 100% of 1GHz CPU
• ~32k batches/s @ 100% of 1GHz CPU
• ~42k batches/s @ 100% of 1GHz CPU
• ~38k batches/s @ 100% of 1GHz CPU
• ~25k batches/s @ 100% of 1GHz CPU
• ~25k batches/s @ 100% of 1GHz CPU
• ~25k batches/s @ 100% of 1GHz CPU
• ~  8k batches/s @ 100% of 1GHz CPU
• ~25k batches/s @ 100% of 1GHz CPU

10k 10k –– 40k batches/s

40k batches/s
(100% 1GHz CPU)

(100% 1GHz CPU)



Small Batches Feasible In Future?
• VTune (1GHz Pentium 3 w/ 2 tri/batch):

– 78% driver; 14% D3D; 6% Other32; rest noise

• Driver doing little per Draw/SetState, but 
– Little times very large multiplier is still large

• Nvidia is optimizing drivers, but…

• Submitting X batches: O(X) work for CPU
– CPU (game, runtime, driver) processes batch
– Can reduce constants but not order O()



GPUs Getting Faster More 
Quickly Than CPUs
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GPUs Continue To Outpace CPUs

• CPU processes batches, thus
– Number of batches/frame MUST scale with:

• Driver/Runtime optimizations
• CPU speed increases

• GPU processes triangles (per batch), thus
– Number of triangles/batch scales with:

• GPU speed increases

• GPUs getting faster more quickly than CPUs
– Batch sizes CAN increase



So, How Many Tris Per Batch?

• 500? 1000?  It does not matter! 
– Impossible to fit everything into large batches
– A few 2 tris/batch do NOT kill performance!
– N tris/batch: N increases every 6 months

• I am a donut! Ask not how many tris/batch, but 
rather how many batches/frame!

• You get X batches per frame, depending on:
– Target CPU spec
– Desired frame-rate
– How much % CPU available for submitting batches



You get X batches per frame,You get X batches per frame,

X mainly depends on X mainly depends on CPU specCPU spec



What is X?

• 25k batches/s @ 100% 1 GHz CPU
– Target: 30fps; 2GHz CPU; 20% (0.2) Draw/SetState: 
– X = 333 batches/frame

• Formula: 25k * GHz * Percentage/Framerate
– GHz = target spec CPU frequency
– Percentage = value 0..1 corresponding to CPU 

percentage available for Draw/SetState
calls 

– Framerate = target frame rate in fps



Please Hang Over Your Bed

25k batches/s @ 100% 25k batches/s @ 100% 
1GHz CPU1GHz CPU



How Many Triangles Per Batch?

• Up to you!
– Anything between 1 to 10,000+ tris possible

• If small number, either
– Triangles are large or extremely expensive
– Only GPU vertex engines are idle

• Or
– Game is CPU bound, but don’t care because 

you budgeted your CPU ahead of time, right?
– GPU idle (available for upping visual quality)



GPU Idle?  Add Triangles For Free!



GPU Idle?
Complicate Pixel Shaders For Free!



300 Batches Per Frame Sucks

• (Ab)use GPU to pack multiple batches 
together

• Critical NOW!
– For increasing number of objects in game 

world

• Will only become more critical in the 
future



Batch Breaker: Texture Change

• Use all of 16 textures on DX9 parts
– Fit 8 distinct dual-textured batches into 1 

single batch

• Pack multiple textures into 1 surface
– Works as long as no wrap/repeat
– Requires tool support
– Potentially wastes texture space
– Potential problems w/ multi-sampling



Batch Breaker: Transform Change
• Pre-transform static geometry 

– Once in a while
– Video memory overhead: model replication

• 1-Bone matrix palette skinning
– Encode world matrix as 2 float4s

• axis/angle 
• translate/uniform scale

– Video memory overhead: model replication

• Data-dependent vertex branching
– Render variable # of bones/lights in one batch



Batch Breaker: Material Change

• Compute multiple materials in pixel-shaders
– Choose/Interpolate based on 

• Per-vertex attribute
• Texture-map



But Only High-End GPUs
Have That Feature!?
• Yes, but high-end GPUs most likely CPU-

bound

• High-End GPUs most suited to deal with:
– Longer vertex-shaders
– Longer pixel-shaders
– More texture accesses
– Bigger video memory requirements

• To improve batching



But These Things Slow GPU Down!?

• Remember: CPU-limited
– GPU is mostly idle

• Making GPU work, so CPU does NOT

• Overall effect: faster game



25k batches/s @ 100% 25k batches/s @ 100% 
1GHz CPU1GHz CPU
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Questions, Comments, Feedback?

• Matthias Wloka: mwloka@nvidia.com

• http://developer.nvidia.com

mailto:mwloka@nvidia.com
http://developer.nvidia.com/
http://developer.nvidia.com/


Can You Afford to
Loose These Speed-Ups?

• 2 tris/batch
– Max. of ~0.1 MTriangles/s for 1GHz Pentium 3

• Factor 1500x away from max. throughput 

– Max. of ~0.4 MTriangles/s for Athlon XP 2.7+
• Factor 375x away from max. throughput
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