
DirectX 9 Performance
Where does it come from, and where does it all go?

Matthias Wloka
MWloka@nvidia.com

Richard Huddy
RHuddy@ati.com

Where does it all come from?
• Complex pixel shader support (2.0

and better)
• Multi-GigaPixel fill-rates
• 100’s of millions of triangles per

second of geometry throughput
• Multi-sample anti-aliasing
• High Quality texture filtering

Where does it all come from?
• So games should be able to run at

1280x1024 at refresh rate with AA
and high quality filtering enabled at
all times…

• Yes?

But where does it all go?
• Too many apps are CPU limited…

– They send too many state changes
– They don’t batch their triangles
– They misuse vertex buffers
– They lock critical resources at bad times

• Many games don’t push graphics as
hard as they could…
– Which is a shame because reviewers (and

future gamers) have high end hardware

Last year I suggested this target
• DX9 style mainstream graphics:

– > 0.5 million polys per frame
– < 500 DIP calls
– < 500 VB changes
– < 200 texture changes
– < 200 State change sets
– “Few” SRT calls (that’s single digits...)
– 1 pass per poly is typical, but 2 is sometimes

smart
– Runs at refresh rate of 80Hz or better
– That’s better than 40 million polys per second

• And nothing goes through the fixed function pipes

Pass Reduction (“PR”)
• Use the most powerful shader

available to reduce the total number
of passes required to render a given
thing to a given standard.
– Use ps2.0 to PR 1.x techniques

• Usually n passes -> 1 pass

– Use ps1.4 to PR 1.1 – 1.3 techniques
• Commonly 2 passes -> 1 pass

– Use ps1.x to PR fixed function techniques

General resource management
• Create your most important resources

first. That’s targets, shaders, textures,
VB’s, IB’s etc

• “Most important” is defined as “most
frequently used”

• Never call Create in your main loop

– So create the main colour and Z buffers
before you do anything else…

• The “main buffer” is the one through which the
largest number of pixels pass…

Sorting
• Sort roughly front to back

– There’s a staggering amount of hardware
devoted to making this highly efficient

• Sort by vertex shader
…or…

• Sort by pixel shader, or
• sort by texture

• When you change VS or PS it’s good to
go back to that shader as soon as
possible…

• Short shaders are faster^2 when sorted

Clearing
• Ideally use Clear once per frame

– Always clear the whole render target
– Always clear colour, Z and stencil together

unless you can just clear Z/stencil
• Don’t force us to preserve stencil if you don’t

need it…

• Don’t use 2 triangles to clear…
• Using Clear() is the way to get all the

fancy Z buffer hardware working for you

Vertex Buffers
• Use the standard DirectX8/9 VB

handling algorithm with DISCARD &
NOOVERWRITE etc

• Specify write-only if possible
• Use POOL_DEFAULT if possible
• Roughly 2 – 4 MB for best performance

– This allows large batches
– And gives the driver sufficient granularity

to manage memory efficiently

Index Buffers
• Treat Index Buffers exactly as if they

were vertex buffers – except always
choose the smallest element possible

– i.e. Use 32 bit indices only if you need to
– Use 16 bit indices whenever you can

• Much recent hardware treats Index
Buffers as ‘first class citizens’

– They don’t have to be copied about before
the chip gets access

– So keep them out of system memory

Updating Index and Vertex Buffers
• IBs and VBs which are optimally located

need to be updated with sequential
DWORD writes.

• AGP memory and LVM both benefit from
this treatment…

Handling Render States
• Prefer minimal state blocks

– ‘minimal’ means you should weed out any
redundant state changes where possible

• If 5% of state changes are redundant that’s OK
• If 50% are redundant then get it fixed!

• The expensive state changes:
– Switching between VS and FF
– Switching Vertex Shader
– Changing Texture

How to draw stuff
• DrawIndexedPrimitive(strip or list)

– Indexing is a big win on real world data
– Long strips beat everything else
– Use lists if you would have to add large

numbers of degenerate polys to stick with
strips (more than ~20% means use lists)

– Make sure your VB’s and IB’s are in optimal
memory for best performance

– Give the card hundreds of polys per call
• Small batches murder your performance

Vertex data
• Don’t scatter it around

– Fewer streams give better cache behaviour
• Compress it if you can

– 16 bits or less per component
– Even if it costs you 1 or 2 ops in the shader…

• Try to avoid spilling into AGP
– Because AGP has high latency

• pow2 sizes help – 32 bytes is best
– Work the cache on the GPU

• Avoid random access patterns where possible
by reordering vertex data before the main
loop…

– That’s at app start up or at authoring time

What Is a Batch?
• Every DrawIndexedPrimitive() is a batch

– Submits n number of triangles to GPU
– Same render state applies to all tris in batch
– SetState calls prior to Draw are part of batch

• Assuming efficient use of API
– No Draw*PrimitiveUP()
– DrawPrimitive() permissible if warranted
– No unnecessary state changes

• Changing state means at least two batches

Why Are Small Batches Bad?

• Games would rather draw 1M
objects/batches of 10 tris each
– versus 10 objects/batches of 1M tris each

• Lots of guesses
– Changing state inefficient on GPUs (WRONG)
– GPU triangle start-up costs (WRONG)
– OS kernel transitions (WRONG)

• Future GPUs will make it better!? Really?

• Test app does…
– Degenerate triangles (no fill cost)
– 100% PostTnL cache vertices (no xform cost)
– Static data (minimal AGP overhead)
– ~100k tris/frame, i.e., floor(100k/x) draws
– Toggles state between draw calls:

(VBs, w/v/p matrix, tex-stage and alpha states)

• Timed across 1000 frames

Let’s Write Code!
Testing Small Batch Performance

• Theoretical maximum triangle rates!

Measured Batch-Size Performance

0

10

20

30

40

50

60

70

80

90

100
10 30 50 70 90 11

0

13
0

15
0

17
0

19
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

triangles/batch

m
ill

io
n

tr
ia

ng
le

s/
s

Athlon XP 2.7+; NVIDIA GeForce FX 5800
Athlon XP 2.7+; NVIDIA GeForce4 Ti 4600
Athlon XP 2.7+; NVIDIA GeForce3 Ti 500
Athlon XP 2.7+; NVIDIA GeForce4 MX 440
Athlon XP 2.7+; NVIDIA GeForce2 MX/MX 400

Axis scale changeAxis scale change

Optimization Opportunities

0

10

20

30

40

50

60

70

80

90

100

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

triangles/batch

m
ill

io
n

tr
ia

ng
le

s/
s

Athlon XP 2.7+; NVIDIA GeForce FX 5800
Athlon XP 2.7+; NVIDIA GeForce4 Ti 4600
Athlon XP 2.7+; NVIDIA GeForce3 Ti 500
Athlon XP 2.7+; NVIDIA GeForce4 MX 440
Athlon XP 2.7+; NVIDIA GeForce2 MX/MX 400 >100x>100x

Axis scale changeAxis scale change

40x40x

Measured Batch-Size Performance

0

10

20

30

40

50

60

70

80

90

100
10 30 50 70 90 11

0

13
0

15
0

17
0

19
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

triangles/batch

m
ill

io
n

tr
ia

ng
le

s/
s

Athlon XP 2.7+; NVIDIA GeForce FX 5800
Athlon XP 2.7+; NVIDIA GeForce4 Ti 4600
Athlon XP 2.7+; NVIDIA GeForce3 Ti 500
Athlon XP 2.7+; NVIDIA GeForce4 MX 440
Athlon XP 2.7+; NVIDIA GeForce2 MX/MX 400

Axis scale changeAxis scale change

<130 tris/batch:
- App is GPUGPU--independentindependent
- Completely CPU-limited

CPU-Limited?

• Then performance results only depend on
– How fast the CPU is

• Not GPU

– How much data the CPU processes
• Not how many triangles per batch!

• CPU processes draw calls (and
SetStates), i.e., batches

• Let’s graph batches/s!

What To Expect If CPU Limited

batch-size: triangles/batch

ba
tc

he
s/

s GPU 1
GPU 2
GPU 3

fast CPU

slow CPU

Effects of Different CPU Speeds

Two distinct bands,
corresponding to
different CPU speeds

batch-size: triangles/batch

ba
tc

he
s/

s GPU 1
GPU 2
GPU 3

fast CPU

slow CPU

Effects of Number of Tris/Batch

Straight horizontal
lines: batches/s
independent of
number of triangles
per batch

batch-size: triangles/batch

ba
tc

he
s/

s GPU 1
GPU 2
GPU 3

fast CPU

slow CPU

Effects of Different GPUs

Different GPUs
perform similarly;
slight variations
due to different
driver paths

batch-size: triangles/batch

ba
tc

he
s/

s GPU 1
GPU 2
GPU 3

fast CPU

slow CPU

Measured Batches Per Second

0

25

50

75

100

125

150

175

200

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

T
h

o
u

s
a

n
d

s

triangles/batch

b
at

ch
es

/s

Athlon XP 2.7+; NVIDIA GeForceFX 5800 Ultra
Athlon XP 2.7+; NVIDIA GeForce4 Ti 4600
Athlon XP 2.7+; NVIDIA GeForce3 Ti 500
Athlon XP 2.7+; NVIDIA GeForce4 MX 440
Athlon XP 2.7+; NVIDIA GeForce2 MX/MX 400
1GHz Pentium 3; NVIDIA GeForceFX 5800 Ultra
1GHz Pentium 3; NVIDIA GeForce4 Ti 4600
1GHz Pentium 3; NVIDIA GeForce3 Ti 500
1GHz Pentium 3; NVIDIA GeForce4 MX 440
1GHz Pentium 3; NVIDIA GeForce2 MX/MX 400
1GHz Pentium 3; Radeon 9700/9500 SERIES

1GHz Pentium 3

Athlon XP 2.7+

~170k batches/s

~60k batches/s

x ~2.7

Side Note: OpenGL Performance

0
25
50
75

100
125
150
175
200

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

T
h

o
u

sa
n

d
s

triangles/batch

b
at

ch
es

/s

1GHz Pentium 3; NVIDIA GeForce4 Ti 4600; OpenGL
1GHz Pentium 3; NVIDIA GeForce4 Ti 4600; Direct3D

OpenGLOpenGL

Direct3DDirect3D

x 1.7x 1.7--2.32.3
OpenGLOpenGL

Direct3DDirect3D

CPU Limited?
• Yes, at < 130 tris/batch (avg) you are

– completely,
– utterly,
– totally,
– 100%

– CPU limited!

• CPU is busy doing nothing,
but submitting batches!

How ‘Real’ Is Test App?

• Test app only does SetState, Draw, repeat;
– Stays in CPU cache
– No frustum culling, no nothing
– So pretty much best case

• Test app changes arbitrary set of states
– Types of state changes?
– And how many states change?
– Maybe real apps do fewer/better state changes?

Real World Performance

• 353 batches/frame @ 16% 1.4GHz CPU: 26fps
• 326 batches/frame @ 18% 1.4GHz CPU: 25fps
• 467 batches/frame @ 20% 1.4GHz CPU: 25fps
• 450 batches/frame @ 21% 1.4GHz CPU: 25fps
• 700 batches/frame @ 100% (!) 1.5GHz CPU: 50fps
• 1000 batches/frame @ 100% (!) 1.5GHz CPU: 40fps
• 414 batches/frame @ 20% (?) 2.2GHz CPU: 27fps
• 263 batches/frame @ 20% (?) 3.0GHz CPU: 18fps
• 718 batches/frame @ 20% (?) 3.0GHz CPU: 21fps

Normalized
Real World Performance
• ~41k batches/s @ 100% of 1GHz CPU
• ~32k batches/s @ 100% of 1GHz CPU
• ~42k batches/s @ 100% of 1GHz CPU
• ~38k batches/s @ 100% of 1GHz CPU
• ~25k batches/s @ 100% of 1GHz CPU
• ~25k batches/s @ 100% of 1GHz CPU
• ~25k batches/s @ 100% of 1GHz CPU
• ~ 8k batches/s @ 100% of 1GHz CPU
• ~25k batches/s @ 100% of 1GHz CPU

10k 10k –– 40k batches/s

40k batches/s
(100% 1GHz CPU)

(100% 1GHz CPU)

Small Batches Feasible In Future?
• VTune (1GHz Pentium 3 w/ 2 tri/batch):

– 78% driver; 14% D3D; 6% Other32; rest noise

• Driver doing little per Draw/SetState, but
– Little times very large multiplier is still large

• Nvidia is optimizing drivers, but…

• Submitting X batches: O(X) work for CPU
– CPU (game, runtime, driver) processes batch
– Can reduce constants but not order O()

GPUs Getting Faster More
Quickly Than CPUs

0

50

100

150

200

Ri
va

 1
28

Ri
va

 Z
X

Ri
va

 T
NT

TN
T2

Ge
Fo

rc
e

Ge
Fo

rc
e2

Ge
Fo

rc
e2

Ul
tra

Ge
Fo

rc
e3

Ge
Fo

rc
e3

Ti

Ge
Fo

rc
e4

Ti

Ge
fo

rc
eF

X

2H97 1H98 2H98 1H99 2H99 1H00 2H00 1H01 2H01 1H02 2H02

GPU

0

1000

2000

3000

4000

5000
CPU MHz

GPU MTris
GPU 32-bit AA Fill
GPU GFlops
CPU MHz

Avg. 18month CPU Speedup: 2.22.2
Avg. 18month GPU Speedup: 3.03.0--3.73.7

GPUs Continue To Outpace CPUs

• CPU processes batches, thus
– Number of batches/frame MUST scale with:

• Driver/Runtime optimizations
• CPU speed increases

• GPU processes triangles (per batch), thus
– Number of triangles/batch scales with:

• GPU speed increases

• GPUs getting faster more quickly than CPUs
– Batch sizes CAN increase

So, How Many Tris Per Batch?

• 500? 1000? It does not matter!
– Impossible to fit everything into large batches
– A few 2 tris/batch do NOT kill performance!
– N tris/batch: N increases every 6 months

• I am a donut! Ask not how many tris/batch, but
rather how many batches/frame!

• You get X batches per frame, depending on:
– Target CPU spec
– Desired frame-rate
– How much % CPU available for submitting batches

You get X batches per frame,You get X batches per frame,

X mainly depends on X mainly depends on CPU specCPU spec

What is X?

• 25k batches/s @ 100% 1 GHz CPU
– Target: 30fps; 2GHz CPU; 20% (0.2) Draw/SetState:
– X = 333 batches/frame

• Formula: 25k * GHz * Percentage/Framerate
– GHz = target spec CPU frequency
– Percentage = value 0..1 corresponding to CPU

percentage available for Draw/SetState
calls

– Framerate = target frame rate in fps

Please Hang Over Your Bed

25k batches/s @ 100% 25k batches/s @ 100%
1GHz CPU1GHz CPU

How Many Triangles Per Batch?

• Up to you!
– Anything between 1 to 10,000+ tris possible

• If small number, either
– Triangles are large or extremely expensive
– Only GPU vertex engines are idle

• Or
– Game is CPU bound, but don’t care because

you budgeted your CPU ahead of time, right?
– GPU idle (available for upping visual quality)

GPU Idle? Add Triangles For Free!

GPU Idle?
Complicate Pixel Shaders For Free!

300 Batches Per Frame Sucks

• (Ab)use GPU to pack multiple batches
together

• Critical NOW!
– For increasing number of objects in game

world

• Will only become more critical in the
future

Batch Breaker: Texture Change

• Use all of 16 textures on DX9 parts
– Fit 8 distinct dual-textured batches into 1

single batch

• Pack multiple textures into 1 surface
– Works as long as no wrap/repeat
– Requires tool support
– Potentially wastes texture space
– Potential problems w/ multi-sampling

Batch Breaker: Transform Change
• Pre-transform static geometry

– Once in a while
– Video memory overhead: model replication

• 1-Bone matrix palette skinning
– Encode world matrix as 2 float4s

• axis/angle
• translate/uniform scale

– Video memory overhead: model replication

• Data-dependent vertex branching
– Render variable # of bones/lights in one batch

Batch Breaker: Material Change

• Compute multiple materials in pixel-shaders
– Choose/Interpolate based on

• Per-vertex attribute
• Texture-map

But Only High-End GPUs
Have That Feature!?
• Yes, but high-end GPUs most likely CPU-

bound

• High-End GPUs most suited to deal with:
– Longer vertex-shaders
– Longer pixel-shaders
– More texture accesses
– Bigger video memory requirements

• To improve batching

But These Things Slow GPU Down!?

• Remember: CPU-limited
– GPU is mostly idle

• Making GPU work, so CPU does NOT

• Overall effect: faster game

25k batches/s @ 100% 25k batches/s @ 100%
1GHz CPU1GHz CPU

Acknowledgements

• Many thanks to

Gary McTaggart, Valve

Jay Patel, Blizzard
Tom Gambill, NCSoft
Scott Brown, NetDevil
Guillermo Garcia-Sampedro, PopTop

Questions, Comments, Feedback?

• Matthias Wloka: mwloka@nvidia.com

• http://developer.nvidia.com

mailto:mwloka@nvidia.com
http://developer.nvidia.com/
http://developer.nvidia.com/

Can You Afford to
Loose These Speed-Ups?

• 2 tris/batch
– Max. of ~0.1 MTriangles/s for 1GHz Pentium 3

• Factor 1500x away from max. throughput

– Max. of ~0.4 MTriangles/s for Athlon XP 2.7+
• Factor 375x away from max. throughput

	Where does it all come from?
	Where does it all come from?
	But where does it all go?
	Last year I suggested this target
	Pass Reduction (“PR”)
	General resource management
	Sorting
	Clearing
	Vertex Buffers
	Index Buffers
	Updating Index and Vertex Buffers
	Handling Render States
	How to draw stuff
	Vertex data
	What Is a Batch?
	Why Are Small Batches Bad?
	Let’s Write Code!Testing Small Batch Performance
	Measured Batch-Size Performance
	Optimization Opportunities
	Measured Batch-Size Performance
	CPU-Limited?
	What To Expect If CPU Limited
	Effects of Different CPU Speeds
	Effects of Number of Tris/Batch
	Effects of Different GPUs
	Measured Batches Per Second
	Side Note: OpenGL Performance
	CPU Limited?
	How ‘Real’ Is Test App?
	Real World Performance
	Normalized Real World Performance
	Small Batches Feasible In Future?
	GPUs Getting Faster More Quickly Than CPUs
	GPUs Continue To Outpace CPUs
	So, How Many Tris Per Batch?
	What is X?
	Please Hang Over Your Bed
	How Many Triangles Per Batch?
	GPU Idle? Add Triangles For Free!
	GPU Idle?Complicate Pixel Shaders For Free!
	300 Batches Per Frame Sucks
	Batch Breaker: Texture Change
	Batch Breaker: Transform Change
	Batch Breaker: Material Change
	But Only High-End GPUsHave That Feature!?
	But These Things Slow GPU Down!?
	Acknowledgements
	Questions, Comments, Feedback?
	Can You Afford toLoose These Speed-Ups?

