
Special Effects with DirectX 9

Alex Vlachos
AVlachos@ati.com

Greg James
GJames@nvidia.com

Outline
• Glow effect

– Developed for Disney/Monolith’s “Tron 2.0”
• Volume fog from polygon objects

– Used in Bandai/Dimps “UniversalCentury.net
Gundam Online”

• Shadows in the Animusic demo
– Composite and Static shadows
– Shadow color determination

• Real-Time Fur
– Coloring
– Thinning
– Length culling

“Tron 2.0” Glow Effect

• Large glows for
complex scenes

• Fast for in-game
use in a FPS

• Efficient HDR
effect

• Multi-colored glow
• Easy to control “Tron2.0” courtesy of Monolith & Disney Interactive

No Glow “Tron2.0” courtesy of Monolith & Disney Interactive

Glow “Tron2.0” courtesy of Monolith & Disney Interactive

blur

How It Works
• Start with ordinary model

– Render to backbuffer

• Render parts that are the
sources of glow
– Render to offscreen texture

• Blur the texture

• Add blur to the scene

=+

Source

Horizontal Blur

Vertical Blur

Efficient Blur
• Blur, then blur the blur

Blur the source
horizontally

Blur the blur
verticaly

Result

General Approach
• No CPU pixel processing!

– No texture locks or CPU readbacks
– Render to GPU video memory textures

• Minimize render target changes
• Fill rate bound

– Minimize fill cost
– Low resolution glow processing
– Magnify glow texture to cover the full screen

• Full scene gets blurred at once
– Could break it up for finer control

Specify Glow Sources

Model with diffuse texture, t0.rgba t0.a * t0.rgb = glow source

• Start with ordinary model
• Designate areas as ‘glow sources’

– texture Alpha * texture RGB = glow source color
– or create separate glow geometry

Render Glow Sources to Texture

Texture render target

• Texture render target can be lower resolution than final display
– Glows are low frequency, smooth
– Can be rendered at low resolution
– The lower the resolution, the more aliased the sources

• You can miss glow sources
• Glow may shimmer and flicker

Low Texture Resolution
• Improve performance and size of glows
• Each glow texel can cover 2, 3, 4 etc.

screen pixels
– Example: Blur a 40x40 texel area
– Becomes a 160x160 screen pixel glow

Assets courtesy of Monolith & Disney Interactive

Blur to Create Glow Texture

Rendered Texture Texture render target

• GPU render-to-texture
• Pixel samples from many neighbors

– Details: “Game Programming Gems 2” article
“Operations for HW-Accelerated Procedural Texture

Animation”

How To Blur
• Neighbor sampling with vertex and pixel shaders
• Simple geometry with several texture coordinates
• Each tex coord samples a pixel’s neighbor

Each pixel samples
its neighbors

Texture sampled at
offset coordinates

Render

Texture
Render
Target

Texture

Texture

Texture

Geometry

Pixel rendered

How to Blur in One Axis
• D3D9

– Use 1 bound texture, sampled N times
– Each sample multiplied by blur profile weight
– Single pass

Glow source texture

Multiplier (weight)

Neighbor sampling
using texture coordinates

Pixel being rendered

How to Blur With D3D8 HW
• D3D8

– Multiple additive passes to build up N samples
– Bind source to 4 tex units, each sampled once
– 4 samples per pass, point or bilinear sampled

First Pass Second Pass
Glow source

Multipliers

Pixel rendered

Neighbor Sampling
• Each pixel samples the same pattern of

neighbors
• One D3D9 pass blurs all pixels horizontally
• One more pass blurs all pixels vertically

Glow source

Weights

Pixels rendered

Blurring
• You might hear ‘separable Gaussian’
• We can use any blur profiles

– More than just Gaussian

• Separating into BlurV(BlurH(x)) restricts the 2D
blur shapes
– Good shapes still possible
– Watch for square features

Add Glow to Scene

+ =

• Apply glow using two triangles covering
the screen

• Additive blend

Performance Concerns
• Limited by:
• Number of DrawPrimitive calls needed to render glow

sources
– Batch rendering of glow sources as much as possible
– Call Draw..Primitive() as little as possible

• Texture render target resolution
– Use pow2 textures or non-pow2? 256x256 or

300x200?
– Test each

• Blur convolution size

– Perf of NxN separable blur is O(N), not O(N2) ☺

Many Uses for Glow Technique
• Key to making things look bright

– Subtle glow has dramatic effect
– Reflections: water, shiny objects
– Atmospheric: neon lights, smoke haze

• More than just glow!
– Blur, depth of field, light scattering

• Remember, it doesn’t require HDR assets or
floating point textures!
– Great for D3D8 hardware
– Greater with D3D9 hardware

Volume Fog from Polygon
Hulls

• Polygon hulls rendered as
thick volumes

• True volumetric effect
• Very easy to author
• Animate volume objects
• Positive and negative

volumes
• Fast, efficient occlusion &

intersection
• ps_2_0, ps.1.3 fallbacks

Practical Effect
• Used in Bandai/Dimps

“UniversalCentury.net Gundam Online”
– Engine thrust

In-gameConcept art

Volume Objects
• Ordinary polygon hulls

– Use existing objects. Closed hulls
– No new per-object vertex or pixel data
– Just a scale value for thickness-to-color and 3 small

shared textures
– Can use stencil shadow volume geometry

The Technique

• Inspired by Microsoft’s “Volume Fog”
DXSDK demo

• Improves the approach
– Higher precision: 12, 15, 18, 21-bit depth
– Precision vs. depth complexity tradeoff
– High precision decode & depth compare
– Dithering
– No banding, even with deep view frustum
– Simple, complete intersection handling for any

shapes

The Technique
• Render to offscreen textures
• Instead of rendering object “color,” render

the object depth at each pixel
– Encode depth as RGB color

• Depths used to calculate thickness through
objects at each pixel

RGB-encoded depthObjects

Before all the Details…

Here’s how simple it is!
1. Render solid objects to backbuffer

– Ordinary rendering

2. Render depth of solid objects that
might intersect the fog volumes
– To ARGB8 texture, “S”
– RGB-encoded depth. High precision!

3. Render fog volume backfaces
– To ARGB8 texture, “B”
– Additive blend to sum depths
– Sample texture “S” for intersection

Simplicity…
4. Render fog volume front faces

– To ARGB8 texture, “F”
– Additive blend to sum depths
– Sample texture “S” for intersections

5. Render quad over backbuffer
– Samples “B” and “F”
– Computes thickness at each pixel
– Samples color ramp
– Converts thickness to color
– Blends color to the scene
– 7 instruction ps_2_0 shader

Floating Point Image Surfaces?
• Why not use those?
• Need additive blending

– No existing HW supports float additive
blending to the render target

– Too many passes without it

• ARGB8 surfaces can do the job
– Good for all D3D8 pixel shading hardware
– Millions can run the effect today

RGB-Encoding of Depth
• Use “L” low bits of each color channel

– ie. 5 low bits from each R, G, and B color
– Gives 3*L bits of precision (15-bit precision)

• (8 – L) high bits “H” for acumulation
– 2(8-L) depth values can be added before overflow
– ie. L=5 lets you add 8 values safely

02550255

RGB-Encoding of Depth
• Use “L” low bits of each color channel

– ie. 5 low bits from each R, G, and B color
– Gives 3*L bits of precision (15-bit precision)

• (8 – L) high bits “H” for summing values
– 2(8-L) values can be added before saturation
– ie. L=5 lets you add 8 values correctly

RGB-Encoding Diagram:
L=2

depth

1.0

B [0,3] 16x

G [0,3] 4x

R [0,3]

• One 6-bit depth uses only [0,3] of [0,255]
• Values [4,255] used when adding depths

RGB-Encoding
• Vertex shader computes depth from [0,1]

• Vertes shader turns depth into tex coords
– TexCoord.r = D * 1.0
– TexCoord.g = D * 2L ie. G = D * 16
– TexCoord.b = D * 22L ie. B = D * 256

DP4 r1.x, V_POSITION, c[CV_WORLDVIEWPROJ_0]
DP4 r1.y, V_POSITION, c[CV_WORLDVIEWPROJ_1]
DP4 r1.z, V_POSITION, c[CV_WORLDVIEWPROJ_2]
DP4 r1.w, V_POSITION, c[CV_WORLDVIEWPROJ_3]

MUL r0.xyz, r1.z, c[CV_DEPTH_TO_TEX_SCALE].xyz

RGB-Encoding
• Texture coordinates read from small R, G,

and B ramp textures
– resolution 2L in the addressed axis
– point sampled with wrapping
– color ramp from [0, 2L –1]

• Example: L = 4, means 16 values per axis

Rendered
Image

Backfaces
Sum

Frontfaces
Sum

Solid
Object
Depth

RGB-Encoded Depths

Overbright So You Can See
Them

Rendered
Image

Backfaces
Sum

Frontfaces
Sum

Solid
Object
Depth

Precision vs. Number of Surfaces
L low bits Depth Precision # of adds

3 9-bit 32
4 12-bit 16
5 15-bit 8

• If visible fog volume depth complexity is
higher than the “# of adds” limit:
– Add a pass to carry the bits
– Or start rendering to another surface
– Most likely, this is never needed

• This is using RGB. Could use RGBA

Rendering Thickness Per-Pixel

∑∑ −= FrontBackThickness

pixels

distance
View
point

FRONT
BACK
THICKNESS

• Sum the depths of all back faces
• Sum the depths of all front faces
• Difference of the sums is the total thickness

Rendering Thickness Per-Pixel

thickness

0.0

View
point

color texture

• Thickness * scale Î TexCoord.x
• Artistic or math color ramp
• Very easy to control the look

Decoding RGB-Encoded Values
• Just one dot-product !

Decoded value =
(D.r, D.g, D.b) DOT (1.0, 2-L, 2-2L)

• Properly handles carried, uncarried, and
negative components

• Must be done at floating point precision
– ps.1.3 texture address ops
– ps_2_0 shader ops

Handling Solid Objects
Intersecting the Fog

• No additional passes required
• Step 2. texture “S” rendered to have nearest solid

object depth
• When rendering fog volume depths:

– No Z-buffer test. Pixels always written
• Pixel shader:

– Compute RGB-encoded distance, “D” to pixel
– Read “S” depth at pixel location
– If “D” is GREATER than “S” then output “S”

ELSE output “D”

D3D9 Depth Encode, Compare,
and Decision Pixel Shader

texld r0, t0, s0 // red+green part of depth encoding
texld r1, t1, s1 // blue part of depth encoding
ADD r0, r0, r1 // RGB-encoded depth of triangle's pixel
texldp r1, t3, s3 // RGB-encoded depth from texture at s2

// Compare depth of triangle's pixel (r0) to depth from texture (r1)
// and choose the lesser value to output.

ADD r2, r0, -r1 // RGB-encoded difference

// Decode to positive or negative value
DP3 r2, r2, CPN_RGB_TEXADDR_WEIGHTS

// always choose the lesser value
CMP r3, r2.xxxx, r1, r0 // r1 >= 0 ? : r1 : r0
MOV oC0, r3

D3D8 Depth Encode,
Compare, and Decision Pixel
Shader
• Numbers must saturate to [-1,1] range

ps.1.3
def c7, 1.0, 0.66, 0.31, 0.0
def c6, -0.01, -0.01, -0.01, 0.0

tex t0 // red+green ramp texture
tex t1 // blue ramp texture
tex t3 // depth of solid objs

add t2, t0, t1 // Add R + G + B to make depth value
add_x4 r1, -t3, t2 // r1 = diff * 4
add_x4 r1, r1, r1
add_x4 r1, r1, r1 // diff * 256, result is –1, 0, or 1 in each color
dp3_x4 r1, r1, c7 // weight R, G, B to make + or - value
// The sign of r1 reflects whether the value which t2 represents is greater
// than or less than the value which t3 represents
add r1, r1, c6 // CMP performs >= 0, so subtract a small value from r1
cmp r0, r1, t3, t2 // r1.rgb >= 0 ? t3.rgb : t2.rgb

Further Uses : Translucency
• Color ramp based on distance light travels

through an object
• Similar to shadow maps

Simon Green, NVIDIAGreg James, NVIDIA

Further Ideas
• Attenuation from volumes

– Simulate light scattering or absorption
– Darken things behind the volumes

• Turbulence texture
– RGB-encoded turbulence applied in order

to add and subtract thickness
– Enhance simple volume fog geometry
– Animate the texture

• Animate the volume objects

Additional Credits
• NVIDIA DevTech & DemoTech!
• Matthias Wloka

– Neighbor sampling & convolution

• Gary King
– Parallel development GeForce FX OGL volume

fog

• Simon Green
– Translucency, endless supply of cool articles!

• Microsoft
• Chas Boyd & co.

– DXSDK examples

Begin Alex

Two more special effects

• Utilizing Destination
Alpha For Composite
Shadows

• Advanced Fur Rendering
Techniques

Composite Shadows

A technique for combining pre-computed shadows
with dynamic, stencil-based shadows

Goals of Composite Shadows
• Look like stencil shadow volumes globally
• Less expensive than global shadow volumes

by not requiring a pass of your scene
geometry per light

• Use shadow cutting to optimize static
shadows (or another technique)

• Reserve shadow volumes for dynamic
objects

• Use destination alpha for composite
operation

Static Shadows
• Shadows cast by non-moving light

sources
• Scene geometry that doesn’t move

– Terrain, rocks, buildings, etc.

• Great opportunity to optimize out the
brute-force nature of dynamic shadow
volumes!

Static Shadows

• Precomputed shadows are cut directly into
the artist-generated geometry

Advantages
• Looks like global stencil shadow volumes

without the fill overhead!
• We can draw the polygons that are in

shadow with a simpler vertex and pixel
shader since fewer lights are affecting
those pixels.

• The light color that casts the shadows are
still animated! Dimming and color change
is possible.

Beam Basics
• A beam is a closed volume created by 4 planes.
• The 4 planes are constructed from a single

triangle and a light’s position.
• 3 of the 4 planes are defined by an edge of the

polygon and the light’s position.
• The 4th plane is simply the plane of the triangle.
• Near vs. Far beam: flip the normal of the 4th

plane.

Polygon

Beam Planes Beam Planes

Near Beam

Polygon

Far Beam

Shadow Cutting Algorithm
• For each polygon in scene (polygon A)

– For each polygon that falls into polygon A’s
“near beam” (polygon B)
• “Far beam” polygon B into polygon A and

mark fragments of A that fall inside of beam
B as in shadow.

Polygon A’s children

In ShadowPolygon A
Beam Polygon B

Difficult Cases
• Due to the simplicity of the algorithm, there is no

recursion. Only original artist-created polygons form
beams.

• This automatically solves for cyclically overlapping
polygons without special code:

Result of Shadow Cutting

Dynamic Shadows
Dynamic shadows are used for animated
geometry using stencil shadow volumes.

Shadow Volumes

Sphere Sphere’s
Shadow
Volume

Shadow Volume Extrusion Setup

A

B

A

B

Face Normals
For Polygon A

Face Normals
For Polygon B

Infinitely Thin
Fill Polygons

Original bordering
polygons.

We insert 2 degenerate polygons between
the original polygons which share the
appropriate face normal encoded in the
vertex.

Stencil Buffer
• Dynamic shadow volumes are

drawn into the stencil buffer.
• Pixels are essentially tagged as in

or out of shadow based on their
stencil value.

• How do we get the shadows into
the color buffer?...

Masking The Correct Light
Brute-force stencil shadows without a per-pixel
dimming factor causes harsh shadows and
darkening below ambient light levels

Over Darkening
From No Dimming

Per-Pixel Dimming
Factor

Per-Pixel Dim Factor
• As the scene is drawn initially, we also

write a useful value to destination
alpha

• This grayscale value represents an
approximation of how dark the pixel
should be if it falls into shadow later

• Future work: use an RGB renderable
texture for better color preservation

Per-Pixel Dim Factor in Dest Alpha
• Later, the dest alpha value will be

multiplied by the dest color value to
obtain the shadow color (ambient in
this case)

• The dest alpha value solves the
following equation per-pixel:

destColor * destAlpha = ambient
destAlpha = ambient / destColor

Contents of Destination Alpha

Composite Shadow Quad
• A full-screen quad is drawn with the

following state enabled:
– D3DRS_SRCBLEND = D3DBLEND_ZERO
– D3DRS_DESTBLEND = D3DBLEND_DESTALPHA
– Stencil state = Allow drawing only to pixels in shadow

shadow

• This provides:
(DestColor*DestAlpha) Masked By Stencil

Results of Composite Shadows

Advanced Fur Techniques

Fur Basics – Shells & Fins

=&

Shells
Base geometry is

grown in the
direction of the

vertex normal for
each shell.

Shells & Fins
Shells and fins are

combined.

Fins
Two triangles are

extruded along the
direction of the edge

normal for each
edge.

Fin Textures
Fins rendered with two RGBA textures

– RGB(DirOfAniso) & Alpha(Opacity)

– R(uOffset), G(0), B(Thinning), & Alpha(LengthCulling)

Fur Color Offset
Fin offset texture used to color
each strand of hair uniformly

Incorrect method of coloring
hair – Stretching the color

straight up

Correct method utilizing the
offset texture to fetch the

color of the hair from its base

Fur Thinning
Fin thinning texture represents the

offset in texture coordinates to fetch
from the base of the strand of fur

Threshold on the fur thinning texture:
0 64 128 192 245

Fur Length Culling
Fin length culling texture
contains normalized fur

length per-strand

Threshold on the fur length culling texture:
0 64 128 192 245

Ugly length by chopping off image:

Bald Spots
Real chimps have bald spots on their foreheads!
We utilize length culling and thinning to replicate this.

Shell Textures
Shells rendered with two RGBA textures

– RGB(DirOfAniso) & Alpha(Opacity)

– RG(uvOffset), B(Thinning), & Alpha(LengthCulling)

Summary
• Glow effect

– Developed for Disney/Monolith’s “Tron 2.0”
• Volume fog from polygon objects

– Used in Bandai/Dimps “UniversalCentury.net Gundam
Online”

• Used destination alpha to blend pre-computed and
dynamic shadows
– Calculating the per-pixel dim factor
– Direct3D blend state for final fullscreen quad

• Advanced fur techniques
– Color offset
– Fur thinning
– Fur length culling

Acknowledgements

• ATI 3D Application Research Group
Demo Team

Questions?

Where are the slides?
• www.ati.com/developer
• www.nvidia.com/developer

• We’ll post them in the next few days

http://www.ati.com/developer
http://www.ati.com/developer
http://www.nvidia.com/developer
http://www.nvidia.com/developer

	Outline
	“Tron 2.0” Glow Effect
	No Glow
	Glow
	How It Works
	Efficient Blur
	General Approach
	Specify Glow Sources
	Render Glow Sources to Texture
	Low Texture Resolution
	Blur to Create Glow Texture
	How To Blur
	How to Blur in One Axis
	How to Blur With D3D8 HW
	Neighbor Sampling
	Blurring
	Add Glow to Scene
	Performance Concerns
	Many Uses for Glow Technique
	Volume Fog from Polygon Hulls
	Practical Effect
	Volume Objects
	The Technique
	The Technique
	Before all the Details…
	Simplicity…
	Floating Point Image Surfaces?
	RGB-Encoding of Depth
	RGB-Encoding of Depth
	RGB-Encoding Diagram: L=2
	RGB-Encoding
	RGB-Encoding
	RGB-Encoded Depths
	Overbright So You Can See Them
	Precision vs. Number of Surfaces
	Rendering Thickness Per-Pixel
	Rendering Thickness Per-Pixel
	Decoding RGB-Encoded Values
	Handling Solid Objects Intersecting the Fog
	D3D9 Depth Encode, Compare, and Decision Pixel Shader
	D3D8 Depth Encode, Compare, and Decision Pixel Shader
	Further Uses : Translucency
	Further Ideas
	Additional Credits
	
	Two more special effects
	Composite Shadows
	Goals of Composite Shadows
	Static Shadows
	Static Shadows
	Advantages
	Beam Basics
	Shadow Cutting Algorithm
	Difficult Cases
	Result of Shadow Cutting
	Dynamic Shadows
	Shadow Volumes
	Shadow Volume Extrusion Setup
	Stencil Buffer
	Masking The Correct Light
	Per-Pixel Dim Factor
	Per-Pixel Dim Factor in Dest Alpha
	Contents of Destination Alpha
	Composite Shadow Quad
	Results of Composite Shadows
	Advanced Fur Techniques
	Fur Basics – Shells & Fins
	Fin Textures
	Fur Color Offset
	Fur Thinning
	Fur Length Culling
	Bald Spots
	Shell Textures
	Summary
	Acknowledgements
	Questions?
	Where are the slides?

