
Direct3D Shader Models

Jason Mitchell
3D Application Research Group

ATI Research, Inc.

Outline
• Vertex Shaders

– Static and Dynamic Flow control
• Pixel Shaders

– ps_2_x
– ps_3_0

Shader Model Continuum

ps_3_0

vs_3_0

ps_2_0
ps_2_b
ps_2_a

vs_2_0
vs_2_a

ps_1_1 – ps_1_3
ps_1_4

vs_1_1

You Are Here

Tiered Experience
• PC developers have always had to scale the experience

of their game across a range of platform capabilities
• Often, developers pick discrete tiers of experience

– DirectX 7, DirectX 8, DirectX 9 is one example

• Shader-only games are in development
• Starting to see developers target the three levels of

shader support as the distinguishing factor among the
tiered experience for their users

Caps in addition to Shader Models
• In DirectX 9, devices can express their abilities via a base shader

version plus some optional caps
• At this point, the only “base” shader versions beyond 1.x are the

2.0 and 3.0 shader versions
• Other differences are expressed via caps:

– D3DCAPS9.PS20Caps
– D3DCAPS9.VS20Caps
– D3DCAPS9.MaxPixelShader30InstructionSlots
– D3DCAPS9.MaxVertexShader30InstructionSlots

• This may seem messy, but it’s not that hard to manage given that
you all are writing in HLSL and there are a finite number of device
variations in the marketplace

• Can easily determine the level of support on the device by using
the D3DXGet*ShaderProfile() routines

Compile Targets / Profiles
• Whenever a new family of devices ships, the HLSL

compiler team may define a new target
• Each target is defined by a base shader version and a

specific set of caps
• Existing compile targets are:

– Vertex Shaders
• vs_1_1
• vs_2_0 and vs_2_a
• vs_3_0

– Pixel Shaders
• ps_1_1, ps_1_2, ps_1_3 and ps_1_4
• ps_2_0, ps_2_b and ps_2_a
• ps_3_0

2.0 Vertex Shader HLSL Targets
• vs_2_0

– 256 Instructions
– 12 temporary registers
– Static flow control (StaticFlowControlDepth = 1)

• vs_2_a
– 256 Instructions
– 13 temporary registers
– Static flow control (StaticFlowControlDepth = 1)
– Dynamic flow control (DynamicFlowControlDepth cap = 24)
– Predication (D3DVS20CAPS_PREDICATION)

vs_2_0
• Old reliable ALU instructions and macros

– add, dp3, dp4, mad, max, min, mov, mul, rcp, rsq, sge, slt
– exp, frc, log, logp, m3x2, m3x3, m3x4, m4x3 and m4x4

• New ALU instructions and macros
– abs, crs, mova
– expp, lrp, nrm, pow, sgn, sincos

• New flow control instructions
– call, callnz, label, ret
– If…else…endif
– loop…endloop, endrep…rep

vs_2_0 Registers
• Floating point registers

– 16 Inputs (vn)
– 12 Temps (rn)
– At least 256 Constants (cn)

• Cap’d: MaxVertexShaderConst

• Integer registers
– 16 Loop counters (in)

• Boolean scalar registers
– 16 Control flow (bn)

• Address Registers
– 4D vector: a0
– Scalar loop counter (only valid in loop): aL

Vertex Shader Flow Control
• Goal is to reduce shader permutations, allowing apps to

manage fewer shaders
– The idea is to control the flow of execution through a relatively

small number of key shaders
• Code size reduction is a goal as well, but code is also

harder for compiler and driver to optimize

• Static Flow Control
– Based solely on constants
– Same code path for every vertex in a given draw call

• Dynamic Flow Control
– Based on data read in from VB
– Different vertices in a primitive can take different code paths

Static Flow Control Instructions
• Conditional

– if…else…endif

• Loops
– loop…endloop
– rep…endrep

• Subroutines
– call, callnz
– ret

Conditionals
• Simple if…else…endif construction based on

one of the 16 constant bn registers
• May be nested
• Based on Boolean constants set through
SetVertexShaderConstantB()

if b3
// Instructions to run if b3 TRUE

else
// Instructions to run otherwise

endif

Static Conditional Example
COLOR_PAIR DoDirLight(float3 N, float3 V, int i)
{

COLOR_PAIR Out;
float3 L = mul((float3x3)matViewIT, -normalize(lights[i].vDir));
float NdotL = dot(N, L);
Out.Color = lights[i].vAmbient;
Out.ColorSpec = 0;
if(NdotL > 0.f)
{

//compute diffuse color
Out.Color += NdotL * lights[i].vDiffuse;

//add specular component
if(bSpecular)
{

float3 H = normalize(L + V); // half vector
Out.ColorSpec = pow(max(0, dot(H, N)), fMaterialPower) * lights[i].vSpecular;

}
}
return Out;

}

The
interesting

part

bSpecular is a
boolean declared at
global scope

Result
...
if b0

mul r0.xyz, v0.y, c11
mad r0.xyz, c10, v0.x, r0
mad r0.xyz, c12, v0.z, r0
mad r0.xyz, c13, v0.w, r0
dp3 r4.x, r0, r0
rsq r0.w, r4.x
mad r2.xyz, r0, -r0.w, r2
nrm r0.xyz, r2
dp3 r0.x, r0, r1
max r1.w, r0.x, c23.x
pow r0.w, r1.w, c21.x
mul r1, r0.w, c5

else
mov r1, c23.x

endif
...

Executes only if
bSpecular is TRUE

Two kinds of loops
• Must be completely inside an if block, or completely

outside of it

• loop aL, in
– in.x - Iteration count (non-negative)
– in.y - Initial value of aL (non-negative)
– in.z - Increment for aL (can be negative)
– aL can be used to index the constant store
– No nesting in vs_2_0

• rep in
– in - Number of times to loop
– No nesting

Loops from HLSL
• The D3DX HLSL compiler has some restrictions on the types of for loops which

will result in asm flow-control instructions. Specifically, they must be of the
following form in order to generate the desired asm instruction sequence:

for(i = 0; i < n; i++)

• This will result in an asm loop of the following form:

rep i0
...

endrep

• In the above asm, i0 is an integer register specifying the number of times to
execute the loop

• The loop counter, i0, is initialized before the rep instruction and incremented
before the endrep instruction.

Static HLSL Loop
...

Out.Color = vAmbientColor; // Light computation

for(int i = 0; i < iLightDirNum; i++) // Directional Diffuse
{

float4 ColOut = DoDirLightDiffuseOnly(N, i+iLightDirIni);
Out.Color += ColOut;

}

Out.Color *= vMaterialColor; // Apply material color

Out.Color = min(1, Out.Color); // Saturate

...

Result
vs_2_0
def c58, 0, 9, 1, 0
dcl_position v0
dcl_normal v1

...
rep i0

add r2.w, r0.w, c57.x
mul r2.w, r2.w, c58.y
mova a0.w, r2.w
nrm r2.xyz, c2[a0.w]
mul r3.xyz, -r2.y, c53
mad r3.xyz, c52, -r2.x, r3
mad r2.xyz, c54, -r2.z, r3
dp3 r2.x, r0, r2
slt r3.w, c58.x, r2.x
mul r2, r2.x, c4[a0.w]
mad r2, r3.w, r2, c3[a0.w]
add r1, r1, r2
add r0.w, r0.w, c58.z

endrep
mov r0, r1
mul r0, r0, c55
min oD0, r0, c58.z

Executes once
for each
directional
diffuse light

Subroutines
• Can only call forward
• Can be called inside of a loop

– aL is accessible inside that loop

• No nesting in vs_2_0 or vs_2_a
– See StaticFlowControlDepth member of
D3DVSHADERCAPS2_0 for a given device

• Limited to 4 in vs_3_0

Subroutines
• Currently, the HLSL compiler inlines all

function calls
• Does not generate call / ret instructions

and likely won’t do so until a future release
of DirectX

• Subroutines aren’t needed unless you find
that you’re running out of shader instruction
store

Dynamic Flow Control
• If D3DCAPS9.VS20Caps.DynamicFlowControlDepth > 0, dynamic flow

control instructions are supported:
– if_gt if_lt if_ge if_le if_eq if_ne

– break_gt break_lt break_ge break_le break_eq break_ne

– break

• HLSL compiler has a set of heuristics about when it is better to emit an
algebraic expansion, rather than use real dynamic flow control
– Number of variables changed by the block
– Number of instructions in the body of the block
– Type of instructions inside the block
– Whether the HLSL has texture or gradient instructions inside the block

Obvious Dynamic Early-Out Optimizations
• Zero skin weight(s)

– Skip bone(s)
• Light attenuation to zero

– Skip light computation
• Non-positive Lambertian term

– Skip light computation
• Fully fogged pixel

– Skip the rest of the pixel shader
• Many others like these…

Dynamic Conditional Example
COLOR_PAIR DoDirLight(float3 N, float3 V, int i)
{

COLOR_PAIR Out;
float3 L = mul((float3x3)matViewIT, -normalize(lights[i].vDir));
float NdotL = dot(N, L);
Out.Color = lights[i].vAmbient;
Out.ColorSpec = 0;
if(NdotL > 0.f)
{

//compute diffuse color
Out.Color += NdotL * lights[i].vDiffuse;

//add specular component
if(bSpecular)
{

float3 H = normalize(L + V); // half vector
Out.ColorSpec = pow(max(0, dot(H,N)), fMaterialPower) * lights[i].vSpecular;

}
}
return Out;

}

Dynamic condition
which can be different
at each vertex

The
interesting

part

Result
dp3 r2.w, r1, r2

if_lt c23.x, r2.w
if b0

mul r0.xyz, v0.y, c11
mad r0.xyz, c10, v0.x, r0
mad r0.xyz, c12, v0.z, r0
mad r0.xyz, c13, v0.w, r0
dp3 r0.w, r0, r0
rsq r0.w, r0.w
mad r2.xyz, r0, -r0.w, r2
nrm r0.xyz, r2
dp3 r0.w, r0, r1
max r1.w, r0.w, c23.x
pow r0.w, r1.w, c21.x
mul r1, r0.w, c5

else
mov r1, c23.x

endif
mov r0, c3
mad r0, r2.w, c4, r0

else
mov r1, c23.x
mov r0, c3

endif

Executes only if
N.L is positive

Hardware Parallelism
• This is not a CPU
• There are many shader units executing in parallel

– These are generally in lock-step, executing the same instruction on different
pixels/vertices at the same time

– Dynamic flow control can cause inefficiencies in such an architecture since
different pixels/vertices can take different code paths

• Dynamic branching is not always a performance win
• For an if…else, there will be cases where evaluating both the blocks

is faster than using dynamic flow control, particularly if there is a small
number of instructions in each block

• Depending on the mix of vertices, the worst case performance can be
worse than executing the straight line code without any branching at all

Predication
• One way around the parallelism issue
• Effectively a method of conditionally executing code on

a per-component basis, or you can think of it as a
programmable write mask

• Optionally supported on {v|p}s_2_0 by setting
D3D{V|P}S20CAPS_PREDICATION bit

• For short code sequences, it is faster than executing a
branch, as mentioned earlier

• Can use fewer temporaries than if…else
• Keeps shader units in lock-step but gives behavior of

data-dependent execution
– All shader units execute the same instructions

if…else…endif vs. Predication

• You’ll find that the HLSL compiler does
not generate predication instructions

• This is because it is easy for a hardware
vendor to map if…else…endif code
to hardware predication, but not the
other way around

vs_3_0
• Basically vs_2_0 with all of the caps
• No fine-grained caps like in vs_2_0. Only one:

– MaxVertexShader30InstructionSlots (512 to 32768)

• More temps (32)
• Indexable input and output registers
• Access to textures!

– texldl

– No dependent read limit

vs_3_0 Outputs
• 12 generic output (on) registers
• Must declare their semantics up-front like the

input registers
• Can be used for any interpolated quantity (plus

point size)
• There must be one output with the
dcl_positiont semantic

vs_3_0 Semantic Declaration

vs_3_0
dcl_color4 o3.x // color4 is a semantic name
dcl_texcoord3 o3.yz // Different semantics can be packed into one register
dcl_fog o3.w
dcl_tangent o4.xyz
dcl_positiont o7.xyzw // positiont must be declared to some unique register

// in a vertex shader, with all 4 components
dcl_psize o6 // Pointsize cannot have a mask

• Note that multiple semantics can go into a single
output register

• HLSL currently doesn’t support this multi-packing

Connecting VS to PS

3.0 Vertex Shader
2.0 Vertex Shader

2.0 Pixel Shader

oD0oPos oPtsoFog oD1 oT0 oT1 oT2 oT3 oT4 oT5 oT6 oT7

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11

3.0 Pixel Shader

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 vPos.xy vFace

Triangle
Setup

Semantic Mapping

o0

Triangle
Setup

v0 v1 t0 t1 t2 t3 t4 t5 t6 t7

FF
u

n
c

Vertex Texturing in vs_3_0

• With vs_3_0, vertex shaders can sample textures
• Many applications

– Displacement mapping
– Large off-chip matrix palette
– Generally cycling processed data (pixels) back into the

vertex engine

Vertex Texturing Details
• With the texldl instruction, a vs_3_0 shader

can access memory
• The LOD must be computed by the shader
• Four texture sampler stages

– D3DVERTEXTEXTURESAMPLER0..3
• Use CheckDeviceFormat() with
D3DUSAGE_QUERY_VERTEXTEXTURE to
determine format support

• Look at VertexTextureFilterCaps to
determine filtering support (no Aniso)

2.0 Pixel Shader HLSL Targets
• ps_2_0

– 64 ALU & 32 texture instructions
– 12 temps
– 4 levels of dependency

• ps_2_b
– 512 instructions (any mix of ALU and texture, D3DPS20CAPS_NOTEXINSTRUCTIONLIMIT)

– 32 temps
– 4 levels of dependency

• ps_2_a
– 512 instructions (any mix of ALU and texture, D3DPS20CAPS_NOTEXINSTRUCTIONLIMIT)

– 22 temps
– No limit on levels of dependency (D3DPS20CAPS_NODEPENDENTREADLIMIT)

– Arbitrary swizzles (D3DPS20CAPS_ARBITRARYSWIZZLE)

– Predication (D3DPS20CAPS_PREDICATION)

– Most static flow control
• if…else…endif, call/callnz…ret, rep…endrep
• HLSL doesn’t generate static flow control for ps_2_a

– Gradient instructions (D3DPS20CAPS_GRADIENTINSTRUCTIONS)

2.0 Pixel Shader HLSL Targets
ps_2_0 ps_2_b ps_2_a

Instructions 64 + 32 512 512

Temporary Registers 12 32 22

Levels of dependency 4 4 Unlimited

Arbitrary swizzles

Predication

Static flow control

Gradient Instructions

ps_3_0

• Longer programs (512 minimum)
• Dynamic flow-control
• Access to vFace and vPos.xy
• Centroid interpolation

Aliasing due to Conditionals
• Conditionals in pixel shaders can cause aliasing!
• You want to avoid doing a hard conditional with a quantity

that is key to determining your final color
– Do a procedural smoothstep, use a pre-filtered texture for the

function you’re expressing or bandlimit the expression
– This is a fine art. Huge amounts of effort go into this in the offline

world where procedural RenderMan shaders are a staple
• On some compile targets, you can find out the screen

space derivatives of quantities in the shader for this
purpose…

Shader Antialiasing
• Computing derivatives (actually differences) of shader quantities with respect to screen x, y

coordinates is fundamental to procedural shading
• LOD is calculated automatically based on a 2×2 pixel quad, so you don’t generally have to

think about it, even for dependent texture fetches
• The HLSL dsx(), dsy() derivative intrinsic functions, available when compiling for ps_2_a

and ps_3_0, can compute these derivatives

• Use these derivatives to antialias your procedural shaders or
• Pass results of dsx() and dsy() to texnD(s, t, ddx, ddy)

dx
dr

dx
dt

dx
ds

dy
dr

dy
dt

dy
ds

Derivatives and Dynamic Flow Control
• The result of a gradient calculation on a computed

value (i.e. not an input such as a texture coordinate)
inside dynamic flow control is ambiguous when
adjacent pixels may go down separate paths

• Hence, nothing that requires a derivative of a computed
value may exist inside of dynamic flow control
– This includes most texture fetches, dsx() and dsy()
– texldl and texldd work since you have to compute the LOD

or derivatives outside of the dynamic flow control

• RenderMan has similar restrictions

vFace & vPos
• vFace – Scalar facingness register

– Positive if front facing, negative if back facing
– Can do things like two-sided lighting
– Appears as either +1 or -1 in HLSL

• vPos – Screen space position
– x, y contain screen space position
– z, w are undefined

Centroid Interpolation
• When multisample antialiasing, some pixels

are partially covered
• The pixel shader is run once per pixel
• Interpolated quantities are generally

evaluated at the center of the pixel
• However, the center of the pixel may lie

outside of the primitive
• Depending on the meaning of the

interpolator, this may be bad, due to what is
effectively extrapolation beyond the edge of
the primitive

• Centroid interpolation evaluates the
interpolated quantity at the centroid of the
covered samples

• Available in ps_2_0 in DX9.0c
4-Sample BufferPixel Center

Sample Location
Covered Pixel Center
Covered Sample
Centroid

Centroid Interpolation
• When multisample antialiasing, some pixels

are partially covered
• The pixel shader is run once per pixel
• Interpolated quantities are generally

evaluated at the center of the pixel
• However, the center of the pixel may lie

outside of the primitive
• Depending on the meaning of the

interpolator, this may be bad, due to what is
effectively extrapolation beyond the edge of
the primitive

• Centroid interpolation evaluates the
interpolated quantity at the centroid of the
covered samples

• Available in ps_2_0 in DX9.0c
Pixel Center
Sample Location
Covered Pixel Center
Covered Sample
Centroid

One Pixel

Centroid Usage
• When?

– Light map paging
– Interpolating light vectors
– Interpolating basis vectors

• Normal, tangent, binormal
• How?

– Colors already use centroid interpolation automatically
– In asm, tag texture coordinate declarations with _centroid
– In HLSL, tag appropriate pixel shader input semantics:

float4 main(float4 vTangent : TEXCOORD0_centroid){}

Summary
• Vertex Shaders

– Static and Dynamic Flow control
• Pixel Shaders

– ps_2_x
– ps_3_0

	Direct3D Shader Models
	Outline
	Shader Model Continuum
	Tiered Experience
	Caps in addition to Shader Models
	Compile Targets / Profiles
	2.0 Vertex Shader HLSL Targets
	vs_2_0
	vs_2_0 Registers
	Vertex Shader Flow Control
	Static Flow Control Instructions
	Conditionals
	Static Conditional Example
	Result
	Two kinds of loops
	Loops from HLSL
	Static HLSL Loop
	Result
	Subroutines
	Subroutines
	Dynamic Flow Control
	Obvious Dynamic Early-Out Optimizations
	Dynamic Conditional Example
	Result
	Hardware Parallelism
	Predication
	if…else…endif vs. Predication
	vs_3_0
	vs_3_0 Outputs
	vs_3_0 Semantic Declaration
	Connecting VS to PS
	Vertex Texturing in vs_3_0
	Vertex Texturing Details
	2.0 Pixel Shader HLSL Targets
	2.0 Pixel Shader HLSL Targets
	ps_3_0
	Aliasing due to Conditionals
	Shader Antialiasing
	Derivatives and Dynamic Flow Control
	vFace & vPos
	Centroid Interpolation
	Centroid Interpolation
	Centroid Usage
	Summary

