


Filtering Cubemaps
Angular Extent Filtering and Edge Seam Fixup Methods

Filtering Cubemaps
Angular Extent Filtering and Edge Seam Fixup Methods

John R. Isidoro
3D Application Research Group

ATI Research



IntroductionIntroduction

• Hardware cube mapping is ubiquitous.
– Straightforward hardware implementation, fast!
– (Unnormalized) direction vector used directly to fetch from texture.

• Fewer ALU ops than other environment map parameterizations.

– Single texture fetch for any environment map direction.
– Solid angle subtended by texels doesn’t vary as much as it does 

in other single fetch parameterizations such as spherical maps, 
lat-long maps, or angular maps.



MotivationMotivation
• However, two main issues remain troublesome 

for cube map users.
– Virtually no current graphics hardware provides bi/tri 

linear filtering across cube faces directly.
• Visible cubemap face edge seams in many cases. (miplevels)

• Complaints about this from quite a few people.

• Expensive to do correctly in hardware.  Per-face texture borders 
are another possibility but are rarely supported.

– Current approaches treat each cube face as a flat 2D 
texture for filtering. 

• It would be useful to take into account the varying solid angle of 
cube map texels across a face.



OverviewOverview
• The techniques described in this sketch 

Angular Extent Filtering and Edge Seam 
Fixup attempt to address these issues.

• These methods are used for preprocessing 
and mipchain generation for existing static 
cubemaps.



Angular Extent Filtering (AEF)Angular Extent Filtering (AEF)

• Angular extent filtering processes all taps within a given 
angle of the 3D center tap vector.
– Filter extent is not texel size dependent, rather filter extent has 

constant solid angle, (e.g. constant area when projected onto the 
unit sphere). 

• Filter may (and should) encompass a different number of texels for 
different center tap vectors.

– This allows for filtering kernels that span across cube face edges.

Center tap
vector

θ

Angular 
extent

Center tap
vector

θ

Angular 
extent

Filtering within Face Filtering across faces



Efficient angular extent filteringEfficient angular extent filtering
• Precompute solid angle and direction vector 

lookup cubemap.
• For each output texel:

– Determine bounding box regions for angular extent in 
each face on input cubemap.

– Process all texels within each bounding box region.
• Filter weights: lookup table indexed using dot product between tap 

vector and center tap vector.

• Weight each texel using solid angle and weights of chosen filter
function.



AdvantagesAdvantages

+ Every texel within angular extent is processed 
exactly once.
– Very important for HDR imagery: Single very bright texels can 

significantly influence the filtered result.

+ Filter is circularly symmetric on the surface of the 
sphere.
– Filter shape is independent of direction vector in spherical 

space.

– The idea is applicable to other parameterizations as well, 

– The precomputed solid angle and direction vector map is 
only dependent on the resolution and the 
parameterization.  Can be performed prior to filtering.



Angular Filter TypesAngular Filter Types

Examples of angular extent filtering:

• Disc Filter: All taps within a specified angle of the center tap weighted 
equally.

• Cone Filter: Linear falloff based on angle between tap and center tap.
• Angular Gaussian Filter: Gaussian falloff based on angle between tap 

and center tap.
– 3 standard deviations within specified extent angle. 

Disc FilterDisc Filter Cone FilterCone Filter Angular GaussianAngular Gaussian



Edge Fixup (EF)Edge Fixup (EF)
• In addition to angular extent filtering, texels are 

averaged across edges, and corners after filtering. 
– Obscure seam artifacts from the HW not being able to filter across 

edges.

• To obscure the effects of the averaging, the averaging 
amount is blended into texels within a fixup region of 
the edge.
– Two techniques to do this Pull Fixup and Smooth Fixup.



Edge Fixup: (Pull Fixup)Edge Fixup: (Pull Fixup)

• Pull Approach: looks at the amount of intensity change
caused by averaging edge values. 

• The intensity change is propagated and faded out over the 
texels within a few texel lengths of the edge.
– Fade out is either linear or cubic.

• Preserves high frequency detail, while obscuring the hard 
seam.

.75

.50

.25

.75

.50

.25

Cube Face EdgeIntensity 
Value

Texel 
Intensity 
Values

Cube Face Edge

Fraction of 
averaging 

amount for 4 
texel fixup 

band

Using Pull Fixup



Edge Fixup: (Smooth Fixup)Edge Fixup: (Smooth Fixup)

• Smooth Approach: looks at the intensity value of the edge 
texel caused by averaging edge values. 

• The intensity value is averaged over the texels within a few 
texel lengths of the edge.
– Fade out is either linear or cubic.

• Obscures the seam better, but loses high frequency 
detail.

.75

.50

.25

.75
.50

.25

Cube Face EdgeIntensity 
Value

Texel 
Intensity 
Values

Cube Face Edge

Falloff fraction 
amount for 4 

texel fixup band

Using Smooth Fixup



Pull/Smooth Fixup ExamplePull/Smooth Fixup Example

• Pull fixup preserves high frequency detail better.

• Smooth fixup obscures the edge seam better.

Smooth FixupPull FixupNo Edge Fixup

16x16 miplevel, 4 texel fixup band



Using DXT Block Compression 
with edge fixup
Using DXT Block Compression 
with edge fixup

• DXT1 block compression encodes each 4x4 block of texels using two representative 
ramp colors and 2-bits per texel to linearly interpolate between them.

– Each 4x4 block is independent of the others.

• To use edge fixup, estimate the ramp colors for a block using not only its own 
4x4 neighborhood, but any 4x4 neighborhoods adjacent across a cubemap 
edge.
– Since the ramp colors for across edge adjacent blocks are identical, the edge texel 

colors (post-compression) will be identical as well.

4x4 Block to 
compress

Use texels from 
4x4 blocks adjacent 
across edge to 
estimate ramp 
colors



2x2 Miplevel (Standard)2x2 Miplevel (Standard)

• 2x2 mip-level without edge fixup and across face filtering
– Strong edge artifacts.. 2x2 miplevel is unusable by itself .



2x2 Miplevel (AEF&EF)2x2 Miplevel (AEF&EF)

• AEF & EF allows for the 2x2 mip level to be used as a 
diffuse environment lighting term.



4x4 Miplevel (Standard)4x4 Miplevel (Standard)

• Edge filtering artifacts make the 4x4 miplevel from 
standard mip filtering algorithms are only useful for 
mipmapping purposes.



4x4 Miplevel (AEF&EF)4x4 Miplevel (AEF&EF)

• AEF & EF makes cubemaps with a 4x4 miplevel that 
can also be used for rough metal shaders.



Other Miplevels (AEF&EF)Other Miplevels (AEF&EF)

• Different mip levels can be used to simulate different 
surface roughness [Ashikmin02]
– Rougher surface → more blurry reflection
– Use MaxMipLevel texture sampler state to clamp miplevel, not 

texCUBEbias(…)

4x4 8x8 16x16 32x32



Per-pixel Roughness MappingPer-pixel Roughness Mapping

• Per-pixel roughness mapping
– Pack miplevel index into alpha channel of each cubemap miplevel
– Use it to determine bias amount for texCUBEbias(…) to 

implement miplevel clamping in shader
– Or use texCUBElod(…) on PS 3.0



float fNumMipLevels;     // number of mip-levels in cubemap
float fBlurScale = 4.0; // scale factor for blurriness

float4 main(float2 inUV : TEXCOORD0, float3 inNormal : TEXCOORD1, 
float3 inView : TEXCOORD2) : COLOR0

{
// Surface roughness stored in alpha of base map
float4 cBase = tex2D(tBase, inUV);
float fRoughness = cBase.a;

float3 R = reflect (normalize(inView), normalize(inNormal));

// Each cubemap stores miplevel index in alpha (scaled by 16/255).
// Determine mip-LOD levels from 0 to fNumMipLevels (minification)
float fMipLevelMinification = (255.0/16.0) * texCUBE(tCube, R).a;

// Determine mip-LOD levels from -fNumMipLevels to 0 (magnification)
float fMipLevelMagnification = (255.0/16.0) * 

texCUBEbias(tCube, float4(R, fNumMipLevels-1.0)).a;
[…]

Roughness Mapping ShaderRoughness Mapping Shader

• Determine the miplevel for the current texel by fetching the 
cube map with different mipbias levels and using the miplevel 
stored in the alpha channel.



Roughness Mapping ShaderRoughness Mapping Shader
[…]  

float fMipLevel = 0;

//choose between magnification and minification range
if(fMipLevelMinification == 0) { // 0 is the largest (base) miplevel
// the whole cubemap is being magnified, compute "logical" miplevel
// (which is negative)
fMipLevel = fMipLevelMagnification - (fNumMipLevels - 1.0);

}
else {
// the cubemap is being minified
fMipLevel = fMipLevelMinification;

}

// compute final mip bias to clamp miplevel
float fMipBias = max(fGlossScale * fRoughness - fMipLevel, 0.0);

float4 cRefl = texCUBEbias(tCube, float4(R, fMipBias));

return cBase * cRefl;
}

• The miplevel can be subsequently used to determine the mipbias
amount needed to implement per-pixel mip-level clamping in the pixel 
shader.



Roughness MappingRoughness Mapping

• Could use multiple subsequent mip-clamped 
fetches into cubemap for piecewise assembly of 
BRDF response.
– Miplevel determination only needs to be computed 

once per-pixel shader invocation.



CubeMapGen ToolCubeMapGen Tool

• CubeMapGen is a publicly available tool for cubemap 
filtering and mip-chain generation that uses angular 
extent filtering and edge seam fixup.
– Available on http://www.ati.com/developer



ReferencesReferences
• [Ashikhmin02] Ashikhmin, M. and Abhijeet, G. 2002. Simple 

Blurry Reflections with Environment Maps. In Journal of 
Graphics Tools, 7(4):3-8.

• [Kautz00] J. Kautz, P. P. Vázquez, W. Heidrich, and H.-P. 
Seidel A Unified Approach to Prefiltered Environment Maps, EG 
Rendering Workshop '00 

• [Voorhies94] Voorhies, D. and Foran, J. Reflection Vector 
Shading Hardware. SIGGRAPH 1994, pp 163-166

• Some of the cubemaps used in this presentation can be found 
at:

– http://www.debevec.org/Probes/

• Questions?


