
User Customizable Real-Time Fur

John Isidoro
Boston University and ATI Research

JIsidoro@ati.com

Jason L. Mitchell
ATI Research

JasonM@ati.com

Introduction
Recent advances in real-time fur rendering have enabled the
development of more realistic furry characters. In this sketch, we
outline a number of advances to the shell and fin based fur
rendering technique by Lengyel et al [2001] using the pixel and
vertex shader capabilities of modern 3D hardware.

(a)

(b)

Figure 1 � Furry torus and animal claw

Shell and Fin extrusion using Vertex Shaders
Vertex shaders allow for more flexibility in fur rendering by
performing the shell and fin extrusion in hardware. For shells,
each shell vertex is moved in the direction of the normal a fraction
of the fur height. For each of the fins, two of the four vertices are
extruded in the same manner. The fin�s v texture coordinate is
used to choose which vertices get extruded. One of the nice things
about extrusion in a vertex shader is that it allows for the fur length
to be set using a vertex shader constant. A possible application of
this is to have characters in a video game have shrinking or
growing hair during the course of a game.

Per Pixel Anisotropic Lighting on Fins and Shells
One interesting property of stochastically generated fur is the
distribution of hair directions throughout the texture. Due to the
changing directions of curly hairs, it is no longer sufficient to
derive hair direction for lighting from only the albedo texture.
Instead, the hair direction is encoded per pixel along side the
opacity value when the 3D shell and 2D fin fur textures are
generated. When rendering the fur, the per-pixel direction can be
used as a direction of anisotropy for Heidrich and Seidel�s [1999]
strand anisotropy technique. This allows individual hairs to
capture diffuse and specular lighting. This helps to break up the
homogeneity of the fur, producing a more realistic rendering.

Hair Color Sourcing (Shells)
Another technique we use to create more realistic fur is to apply an
albedo texture that produces color variations for different regions
of the fur. The alpha channel of this texture can also be used as an
opacity value to produce bald spots on regions of the model.
However, when the fur texture contains very wavy or slanted fur,
each hair will change color over its length due to the fact the
texture coordinate used to fetch from the albedo texture is directly
tied to the hair�s position. A better approach is to fetch the same
texel from the albedo map over the length of the hair. This way,
when there are sharp edges in the albedo map, the hairs from both
sides of the edge will intermingle, giving a more realistic
appearance. For example, the hairy foot in Figure 1b does not
have fur on the claws. The hairs originating near the claws are
able to bend over the claws while remaining visible and colored
correctly.

Color Sourcing for Shells
To implement color sourcing for shells, another 3D texture is
generated in parallel with the direction/opacity texture. This
texture contains a (u,v) offset for each pixel with the hair which
represents how far the (u,v) position of the hair is from the u,v
position of the albedo of the hair. In the pixel shader used for
rendering the shells, the albedo texture lookup is perturbed by this
(u,v) so that each hair fetches from only one position in the albedo
map. This way, each hair�s albedo is the same over the length of
the hair.

Color Sourcing for Fins
Color sourcing for the fin texture is performed in a similar manner,
but requires additional per vertex data in order to perform the
correct math. Because the fin fur texture is 2D, only a u offset is
required per pixel. However, the fin fur texture coordinates are
different from the albedo map texture coordinates, and an albedo
map (u,v) needs to be computed from the fur texture�s u offset. To
do this, the albedo map du, dv for each fin is encoded per vertex,
and interpolated over the polygon within the pixel shader. In the
pixel shader, the fur texture�s u offset is multiplied by the albedo
map overall fin du, dv in order to get the hair�s (u,v) offset for the
albedo map.

Controlling Hair Density Using the Albedo Map
Another parameter that can be specified over the surface of the
object using an albedo map is hair density. In order to do this, an
additional texture channel is generated in parallel with the other fur
texture channels. In this channel is a �thinning� value from 0.0 to
1.0 which specifies the percentage of the fur texture left to be
generated. The first hair generated gets a value of 1.0, and the last
hair generated gets a value of 0.0. In the pixel shader, a pixel is
only written if its thinning value is less than or equal to the albedo
map�s density value (usually stored in the alpha channel of the
albedo map). This density value causes a percentage of the hairs to
not be drawn, thus thinning the fur.

Hole Filling for Mipmap Generation
Simply down-sampling the color-encoded direction and offset
textures causes incorrect results due to the unfilled pixels in the
texture. In order to get around this, each unfilled pixel in the
texture is replaced by a weighted average of the filled pixels within
a small kernel radius. This results in a texture which varies
smoothly, and can be down-sampled without producing artifacts in
the lighting or albedo map offsets.

Future Enhancements
Since both the fins and shells are extruded along the direction of
the vertex normal in the vertex shader, it is possible to animate the
fur by perturbing the normals. This perturbation could be
performed using a vertex tweening sequence or procedurally inside
a vertex shader.

References
HEIDRICH, W. AND SEIDEL, H.-P. Realistic, Hardware-accelerated

Shading and Lighting. In Proceedings of SIGGRAPH 1999,
ACM Press / ACM SIGGRAPH, New York. 171-178.

LENGYEL, J., PRAUN, E., FINKELSTEIN, A. AND HOPPE, H. Real-
Time Fur over Arbitrary Surfaces. In ACM 2001 Symposium on
Interactive 3D Graphics, 2001.

mailto:JasonM@ati.com

