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(a) Brute force (b) Early-z 
Figure 1: Comparison of fluid flow simulations with and without our early-z acceleration techniques. Both 
simulations use a 512×512 grid (cropped for the figure) and render at 53fps.  

 
Abstract 

We present an efficient algorithm for simulation and ren-
dering of fluid flow on graphics hardware. Our algorithm 
takes advantage of explicit early-z culling to reduce the 
amount of computation during both the simulation and 
rendering steps. Our approach is straightforward to im-
plement and speeds up our simulations in some cases by a 
factor of three. 
1. Introduction 
In recent years, graphics processors have been applied to 
broader areas of computation, such as simulation of natural 
phenomena.  Due to their highly parallel nature and in-
creasingly general computational models, GPUs are well 
matched with the demands of fluid flow simulation.  
In this paper we present acceleration techniques for simula-
tion and rendering of fluid flow. We have implemented a 
fluid simulation on the GPU based on the solution of Na-
vier-Stokes equations which uses explicit early-z culling as 
a means of avoiding certain unnecessary computations. 
More specifically, we present a culling technique for the 

projection step of the fluid flow simulation and a culling 
technique for efficiently rendering fluid flow to the screen.  
 
Fluid flow simulation naturally maps to current graphics 
hardware by performing the different steps of the simula-
tion using full screen quadrilaterals and doing all the work 
in pixel shaders (see Harris [2003b] for a thorough descrip-
tion). Prior to execution of a pixel shader, the graphics 
hardware performs a check of the interpolated z value 
against the z value in the z buffer.  This occurs for any 
pixels which are actually going to use the primitive’s 
interpolated z (rather than compute z in the pixel shader 
itself).  This additional check provides not only an added 
efficiency win when using long, costly pixel shaders, but 
also provides a form of pixel-level flow control in specific 
situations. The z buffer can be thought of as containing 
condition codes governing the execution of expensive pixel 
shaders.  Inserting inexpensive rendering passes whose 
only job is to appropriately set the “condition codes” for 
subsequent expensive rendering passes can increase per-
formance significantly. This approach is known as “early-z 
culling” in real-time rendering. 
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Our techniques are based on the observation that fluid flow 
is often concentrated in sub-regions of the simulation grid. 
The early-z optimizations that we employ significantly 
reduce the amount of computation on regions that have 
little to no fluid density or pressure, saving computational 
resources for regions with higher flow concentration, or for 
rendering other objects in the scene. 
This paper is structured as follows. Section 2 describes 
previous work on fluid simulation and how it relates to our 
approach. Section 3 outlines our algorithm. Sections 4 and 
5 describe the two acceleration techniques that we employ. 
In Section 6, we present results of our algorithm. In Section 
7, we conclude and present directions for future work. 

2. Previous work 
Early methods for fluid simulation were based on explicit 
integration schemes. These methods do not produce a 
stable simulation unless the simulation timestep is very 
small. Stam [1999] introduced an unconditionally stable 
model for fluid simulation. Stam’s approach uses a semi-
Lagrangian integration method and a projection step to 
ensure incompressibility [Chorin 1967]. This solver allows 
for much higher timesteps, resulting in faster, real-time 
stable simulations. Many recent papers on fluid simulation 
for different natural phenomena, such as smoke [Fedkiw et 
al. 2001], fire [Nguyen et al. 2002], and clouds [Harris et 
al. 2003], are partly based on this solver. We also use this 
solver as a basis for our acceleration methods for both 2D 
and 3D simulation. For details on Stam’s stable Navier-
Stokes solver, we refer the reader to the paper [Stam 1999]. 
For a thorough description of fluid simulation on graphics 
hardware, we recommend Harris [2003b]. 
Recently presented optimization techniques simulate fluid 
flow more efficiently by using the graphics hardware. 
Harris et al. [2003] use a red-black Gauss-Seidel relaxation 
method on their fluid simulation as a vectorized optimiza-
tion technique. They also achieve faster rendering rates by 
amortizing their simulation over several frames. In their 3D 
solver, they propose using a “flat 3D texture” that stores all 
slices of a 3D volume in order to improve the efficiency of 
their simulation. Rasmussen et al. [2003] describe an inter-
polation method to create high-resolution 3D fields from a 
small number of 2D fields, significantly reducing computa-
tion and memory requirements. Several methods have been 
proposed to approximate light scattering and other visual 
phenomena in order to achieve realistic results in less time 
(e.g., Fedkiw et al. [2001] and Harris et al. [2003]). 
To our knowledge, the optimization methods to date do not 
dynamically adapt based on the fact that fluid is often 
localized, or at least, more highly concentrated in certain 
areas of the uniform simulation grid. This paper presents an 
acceleration method that takes advantage of this observa-
tion to dynamically reduce computation on regions that 
have little to no fluid density or pressure. Our method is 

simple to implement and can be used in conjunction with 
any of the methods outlined above. 

3. Algorithm overview 
Next, we outline the steps of our algorithm, which simu-
lates incompressible fluid flow. We perform our 
simulations with no viscosity, so the diffusion step is omit-
ted. All of the steps of our fluid simulation algorithm are 
implemented on the GPU using HLSL pixel shaders and 
are executed by rendering full-screen quadrilaterals to 
renderable textures. For additional details on how such a 
flow algorithm is implemented on the GPU, please refer to 
Harris [2003b]. First we will describe how the early z 
approach optimizes the 2D fluid flow simulation, and later 
describe how to extend this approach to 3D fluid flow.  
The first two passes insert flow into the density and veloc-
ity buffers based on mouse input: 
InsertVelocity()  
InsertDensity()  

Next, both the density and velocity buffers are advected 
based on the content of the velocity buffer: 
AdvectVelocity() 
AdvectDensity() 

Finally the projection step is computed and the velocity 
buffer is updated in order to remain mass conserving. The 
brute-force algorithm for computing pressure is as follows: 
ComputeDivergence() 
for ( int i = 0; i < n; i++ ) 
     UpdatePressure() 
SubtractGradient() 

The UpdatePressure() pass is the bottleneck of the algo-
rithm, as it has to be executed approximately 30 times in 
order to yield visually pleasing results. Our algorithm adds 
a new pass to prime the z buffer, and employs early-z 
culling during the pressure computation step: 
ComputeDivergence() 
SetZBufferUsingPressureFromPreviousIteration() 
for(int i = 0; i < n; i++) 
     UpdatePressureWithEarlyZCulling() 
SubtractGradient() 

The details of the algorithm can be found in Section 4. 
After each step of the simulation, we render the density 
buffer to the screen in a single pass: 
RenderDensityToScreen() 

Due to current hardware limitations, bilinear interpolation 
of 32-bit floating point buffers must be performed in the 
pixel shader. This can be very costly if the screen resolu-
tion is significantly higher than the simulation grid 
resolution. In order to reduce the rendering cost, we again 
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employ early-Z culling to skip this computation on cells 
that have little or no density: 
SetZBufferUsingDensity() 
RenderDensityToScreenWithEarlyZCulling() 

Additional details of this particular optimization can be 
found in Section 5. 

 
(a) Pressure buffer for 

simulation culling 
(b) Culled pixels during  
rendering tagged in red 

Figure 2: Visualization of early-z culling. 
4. Projection optimization 
In this section, we describe an optimization that is per-
formed during the projection step, the most expensive step 
of the simulation.  This step is performed as a series of 
rendering passes to solve a linear system using a relaxation 
method. This optimization could also be considered for the 
diffusion step when simulating highly viscous fluid.  
When approximating the solution to this linear system, the 
higher the number of iterations (rendering passes), the more 
accurate the result. Instead of performing the same number 
of passes on all cells, we perform more passes on regions 
where the pressure is higher and fewer passes on regions 
with little or no pressure. This is accomplished by perform-
ing an additional inexpensive rendering pass that sets the z 
value of each cell in the simulation based on the maximum 
value of that cell and a four of its nearby cells from the 
pressure buffer of the previous iteration of the simulation. 
We simply set the z value for a particular cell x to be 

depth = saturate(αP + β) 

where P is the maximum pressure among the neighbors of 
x, and α and β are constants. We achieved best results with 
α = 2.0 and β = 0.1. The β value ensures that, even where 
the pressure is very small, at least some pressure computa-
tion passes will be performed. 
We take into account the pressure of  the neighbors of x, 
because each relaxation step computes the new pressure for 
a given cell as a function of their neighbors. Thus, cells 
with high pressure may significantly increase the pressure 
of cells around it. In our experiments we looked at 
neighbors that were 2 cells away in each of the four direc-
tions. 

After priming the z buffer, we perform the pressure compu-
tation passes. In order to reduce this computation, we set 
the depth compare state to “less than or equal” and linearly 
increase the z value on each of the projection passes. On 
the first pass, the z value is set to 1/N, where N is the total 
number of pressure passes. On the second pass it is 2/N, 
and so on. Therefore, on the first pass, all cells are proc-
essed (because of our β value), and on subsequent passes, 
the number of cells that are processed gradually decreases. 
Figure 2a shows the pressure buffer which is used to set the 
z buffer that culls the projection computation. Darker 
values indicate regions of lower pressure, where fewer 
iterations need to be performed. 
The passes that enforce boundary conditions on the pres-
sure computation are not culled. However, since they only 
affect the pixels on the grid boundaries, it does not hinder 
the performance of the heavily fill-bound simulation. 
Note that this optimization is an approximation and does 
not necessarily yield physically correct results. However, 
the visual improvement of using this method is evident, and 
performing 50 pressure computation passes with this cull-
ing technique yields more realistic results than performing 
10 pressure computation passes with the brute force algo-
rithm in the same amount of time. 

 
(a) 3D view (b) Density buffer (c) Pressure buffer

Figure 3: Visualization of 3D flow  
and the density and pressure buffers. 

4.1. Extension to 3D fluid flow 
We also extended the above optimization to 3D fluid flow 
simulation. Harris [2003] introduces the idea of simulating 
3D flow using a tiled 2D texture (Figure 3ab). This allows 
each step of the simulation to be performed with one single 
pass for all the slices, without having to switch render 
targets. The downside is that the texture coordinate compu-
tation is a bit more expensive and proper care must be 
taken at the boundaries of the slices to correctly account for 
boundary conditions. However, using this technique is 
more efficient than having to constantly switch render 
targets. 
Our optimization naturally extends to 3D flow. As in 2D 
flow, pressure computation is performed by doing multiple 
passes to update the pressure buffer (Figure 3c). Similarly, 
we perform one pass to prime the z buffer based on the 
pressure of the previous simulation iteration, and then, 
when performing the pressure computation passes, we 
perform early-z culling the same way we did with 2D flow.  



 

Page 4 of 6 

Passes to enforce boundary conditions are rendered as 
several thin quadrilaterals that tile the texture square. As in 
the 2D simulation, during these passes, none of the cells are 
culled. 

5. Rendering optimization 
The next optimization is performed at rendering time. 
When rendering the 32-bit floating point density buffer to 
the screen, bilinear interpolation must be performed in the 
pixel shader. This computation can be expensive, especially 
if the dimensions of render target are significantly higher 
than those of the fluid simulation. In order to avoid apply-
ing the bilinear interpolation shader to regions of the screen 
that have very small density, prior to rendering the contents 
of the density buffer, we perform an inexpensive rendering 
pass that simply sets the z buffer value to the density of that 
particular pixel using “nearest” as the texture lookup filter. 
When rendering, we set the depth compare state to “less 
than or equal”, and set the z value to a small constant ε in 
the vertex shader (e.g., 0.01). Thus, all pixels whose densi-
ties are smaller than ε are culled. In Figure 2b, all pixels 
that were too dark to be visible were culled and are tagged 
in red for visualization purposes. Figure 1b shows the final 
rendering without the tagged pixels. 
Note that this optimization does not directly affect the 
simulation, since it is only used for rendering. Since less 
computation time is used for rendering, this optimization 
does indirectly affect the simulation, because more compu-
tation time can be used by the simulation to improve its 
quality. As shown in the results section, this optimization is 
particularly useful for applications that zoom in to regions 
of the flow, or render the result to high resolution buffers.  
While the projection optimization works well with 3D 
flow, unfortunately our rendering optimization does not 
yield an improvement for 3D flow. The cost of an addi-
tional pass for each slice, and of switching shaders multiple 
times is very high. 

6. Results 
In this section, we present some results of applying the 
optimizations described in the earlier sections. Figure 1 
compares a brute-force simulation and a simulation with 
early-z culling. Both examples simulate and render the 
512×512 simulation grid at 53 frames per second. Since the 
brute-force approach performs the same number of pressure 
computations passes on all cells, it only manages 10 pres-
sure computation passes. Our early-z method performs 
somewhere between 5 and 50 pressure computation passes, 
depending on the value in Figure 2a. Since our optimization 
allows for a high number of passes on areas of high pres-
sure, it yields a more realistic result. Our method also 
renders the flow to a 512×512 window using the optimiza-
tion outlined in Section 5. However, for this example the 
rendering optimization does not yield a significant im-
provement, as will be made clear below. 

Figure 4 graphs the performance of our 2D fluid simulation 
with and without each of our optimizations. The frame-rate 
is on the y-axis, while the resolution is on the x-axis (we 
have data points for 128×128, 256×256, 512×512, and 
1024×1024 simulation grid resolutions). In each case, the 
screen resolution for the rendered output is the same as the 
simulation grid resolution. Five curves are plotted. One 
using the brute-force method, two using the simulation 
optimization, and two using both the simulation and render-
ing optimizations. When the optimizations are used, the 
frame rate is variable, so we use two curves for measuring 
performance, one without any flow, and one with the entire 
grid filled with flow. The actual frame rate will be some-
where between these two curves, depending on how much 
density and pressure is present. As evidenced by the three 
lowest curves on the graph, the penalty incurred by having 
the extra pass to set the z buffer is extremely small. On the 
other hand, if significant portions of the screen have no 
flow, the savings can be significant with no visual loss in 
quality. At 128×128, the savings due to the simulation 
optimization can be up to a factor of two with no visual 
loss in simulation quality. At 1024×1024, the savings can 
be up to a factor of three. The improvement due to the 
rendering optimization was not significant in this experi-
ment due to the fact that the resolution of the output 
window is the same as the grid resolution. Since the bulk of 
the computation happens during the projection step of the 
simulation, the resolution of the output window would have 
to be larger than that of the simulation grid for the render-
ing optimization to yield significant improvement. 
Figure 5 graphs the same experiment, but with the output 
window resolution fixed at 1024×1024. In this case, if the 
simulation grid has significantly lower resolution, the 
savings due to the rendering optimization are significant—
nearly a factor of two for the 128×128 simulation grid. 
Figures 7 and 8 show different examples in which the 
pressure buffer is not cleared from one pass to the next 
(causing extremely swirling-like flow). In Figure 7, the 
small number of passes in the pressure buffer coupled with 
a slow frame rate results in a velocity field that is not mass 
conserving. In contrast, when using our culling techniques,  
the result is significantly more stable. 
3D Flow. Figure 9 shows results applied to a 128×128×16 
3D fluid flow simulation. Note that, although the improve-
ment is not as significant as in the 2D simulations, the 
result using our techniques is more realistic. 
Blockers. These culling techniques are also very suitable 
for fluid flow simulations with blockers. Since no computa-
tion needs to be performed on most cells that are blocked 
(approximately half of the cells in Figure 6), these methods 
can further reduce computational costs. Note that blocked 
cells that have neighbors that are not blocked cannot be 
culled and need to be processed in order to yield the proper 
effect when fluid collides with the blocker. 
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Figure 4: Timings of the different culling methods 

(screen resolution set to simulation resolution) 
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Figure 5: Timings of the different culling methods 

(1024×1024 screen resolution) 
7. Summary and future work 
We have presented optimization techniques that take ad-
vantage of early-z culling to efficiently simulate and render 
fluid flow.  
The methods presented in this paper are straightforward to 
implement and yield a significant improvement in render-
ing speed for the same quality, or conversely, an 
improvement in quality for a given frame rate. Our results 
demonstrate that we obtain simulations that look more 
physically accurate than brute-force simulations at a given 
rendering speed. 
Our method excels in scenes where flow is concentrated on 
specific regions of the grid, such as scenes with blockers. 

The main limitation of this approach is that it does not yield 
a significant improvement to simulations that have a large 
amount of fluid over the entire simulation grid. But even in 
the worst case, our simulations will not significantly impair 
the quality or rendering speed in such settings, as evi-
denced by Figures 4 and 5. 
For future work, it would be interesting to further investi-
gate methods to take advantage of the locality of fluid in 
the simulation. We are currently investigating a method 
with adaptive grid sample locations. A hierarchical culling 
approach could also yield significant savings. 
 

Figure 6: Pink flow colliding with blocker in Van 
Gogh’s Starry Night. 
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(a) Brute force (3 projection passes) (b) Early-z  (up to 15 projection passes) 
Figure 7: Side by side of a 1024×1024 2D simulation. Both simulations render at 25fps. The small number 

of passes on the brute-force example causes the velocity field not to be mass conserving. 
 

(a) Brute force (5fps) (b) Early-z (16fps) 
Figure 8: Side by side of a 1024×1024 2D simulation. Both simulations have 40 projection passes. The 
lower frame rate on the brute-force example causes artifacts when flow is inserted at a constant, faster 

rate (e.g., interactive mouse input). 
 

(a) Brute force (3 projection passes) (b) Early-z (up to 30 projection passes) 
Figure 9: 128×128×16 3D flow simulation. Both examples render at 25fps. 

 


