

Page 1 of 6

Explicit Early-Z Culling for Efficient Fluid Flow Simulation and Rendering
ATI Research Technical Report

August 2, 2004

Pedro V. Sander

Natalya Tatarchuk

Jason L. Mitchell
ATI Research, Inc.

62 Forest Street
Marlborough, MA 01752, USA

ATI Research, Inc.
62 Forest Street

Marlborough, MA 01752, USA

ATI Research, Inc.
62 Forest Street

Marlborough, MA 01752, USA

(a) Brute force (b) Early-z
Figure 1: Comparison of fluid flow simulations with and without our early-z acceleration techniques. Both
simulations use a 512×512 grid (cropped for the figure) and render at 53fps.

Abstract

We present an efficient algorithm for simulation and ren-
dering of fluid flow on graphics hardware. Our algorithm
takes advantage of explicit early-z culling to reduce the
amount of computation during both the simulation and
rendering steps. Our approach is straightforward to im-
plement and speeds up our simulations in some cases by a
factor of three.
1. Introduction
In recent years, graphics processors have been applied to
broader areas of computation, such as simulation of natural
phenomena. Due to their highly parallel nature and in-
creasingly general computational models, GPUs are well
matched with the demands of fluid flow simulation.
In this paper we present acceleration techniques for simula-
tion and rendering of fluid flow. We have implemented a
fluid simulation on the GPU based on the solution of Na-
vier-Stokes equations which uses explicit early-z culling as
a means of avoiding certain unnecessary computations.
More specifically, we present a culling technique for the

projection step of the fluid flow simulation and a culling
technique for efficiently rendering fluid flow to the screen.

Fluid flow simulation naturally maps to current graphics
hardware by performing the different steps of the simula-
tion using full screen quadrilaterals and doing all the work
in pixel shaders (see Harris [2003b] for a thorough descrip-
tion). Prior to execution of a pixel shader, the graphics
hardware performs a check of the interpolated z value
against the z value in the z buffer. This occurs for any
pixels which are actually going to use the primitive’s
interpolated z (rather than compute z in the pixel shader
itself). This additional check provides not only an added
efficiency win when using long, costly pixel shaders, but
also provides a form of pixel-level flow control in specific
situations. The z buffer can be thought of as containing
condition codes governing the execution of expensive pixel
shaders. Inserting inexpensive rendering passes whose
only job is to appropriately set the “condition codes” for
subsequent expensive rendering passes can increase per-
formance significantly. This approach is known as “early-z
culling” in real-time rendering.

Page 2 of 6

Our techniques are based on the observation that fluid flow
is often concentrated in sub-regions of the simulation grid.
The early-z optimizations that we employ significantly
reduce the amount of computation on regions that have
little to no fluid density or pressure, saving computational
resources for regions with higher flow concentration, or for
rendering other objects in the scene.
This paper is structured as follows. Section 2 describes
previous work on fluid simulation and how it relates to our
approach. Section 3 outlines our algorithm. Sections 4 and
5 describe the two acceleration techniques that we employ.
In Section 6, we present results of our algorithm. In Section
7, we conclude and present directions for future work.

2. Previous work
Early methods for fluid simulation were based on explicit
integration schemes. These methods do not produce a
stable simulation unless the simulation timestep is very
small. Stam [1999] introduced an unconditionally stable
model for fluid simulation. Stam’s approach uses a semi-
Lagrangian integration method and a projection step to
ensure incompressibility [Chorin 1967]. This solver allows
for much higher timesteps, resulting in faster, real-time
stable simulations. Many recent papers on fluid simulation
for different natural phenomena, such as smoke [Fedkiw et
al. 2001], fire [Nguyen et al. 2002], and clouds [Harris et
al. 2003], are partly based on this solver. We also use this
solver as a basis for our acceleration methods for both 2D
and 3D simulation. For details on Stam’s stable Navier-
Stokes solver, we refer the reader to the paper [Stam 1999].
For a thorough description of fluid simulation on graphics
hardware, we recommend Harris [2003b].
Recently presented optimization techniques simulate fluid
flow more efficiently by using the graphics hardware.
Harris et al. [2003] use a red-black Gauss-Seidel relaxation
method on their fluid simulation as a vectorized optimiza-
tion technique. They also achieve faster rendering rates by
amortizing their simulation over several frames. In their 3D
solver, they propose using a “flat 3D texture” that stores all
slices of a 3D volume in order to improve the efficiency of
their simulation. Rasmussen et al. [2003] describe an inter-
polation method to create high-resolution 3D fields from a
small number of 2D fields, significantly reducing computa-
tion and memory requirements. Several methods have been
proposed to approximate light scattering and other visual
phenomena in order to achieve realistic results in less time
(e.g., Fedkiw et al. [2001] and Harris et al. [2003]).
To our knowledge, the optimization methods to date do not
dynamically adapt based on the fact that fluid is often
localized, or at least, more highly concentrated in certain
areas of the uniform simulation grid. This paper presents an
acceleration method that takes advantage of this observa-
tion to dynamically reduce computation on regions that
have little to no fluid density or pressure. Our method is

simple to implement and can be used in conjunction with
any of the methods outlined above.

3. Algorithm overview
Next, we outline the steps of our algorithm, which simu-
lates incompressible fluid flow. We perform our
simulations with no viscosity, so the diffusion step is omit-
ted. All of the steps of our fluid simulation algorithm are
implemented on the GPU using HLSL pixel shaders and
are executed by rendering full-screen quadrilaterals to
renderable textures. For additional details on how such a
flow algorithm is implemented on the GPU, please refer to
Harris [2003b]. First we will describe how the early z
approach optimizes the 2D fluid flow simulation, and later
describe how to extend this approach to 3D fluid flow.
The first two passes insert flow into the density and veloc-
ity buffers based on mouse input:
InsertVelocity()
InsertDensity()

Next, both the density and velocity buffers are advected
based on the content of the velocity buffer:
AdvectVelocity()
AdvectDensity()

Finally the projection step is computed and the velocity
buffer is updated in order to remain mass conserving. The
brute-force algorithm for computing pressure is as follows:
ComputeDivergence()
for (int i = 0; i < n; i++)
 UpdatePressure()
SubtractGradient()

The UpdatePressure() pass is the bottleneck of the algo-
rithm, as it has to be executed approximately 30 times in
order to yield visually pleasing results. Our algorithm adds
a new pass to prime the z buffer, and employs early-z
culling during the pressure computation step:
ComputeDivergence()
SetZBufferUsingPressureFromPreviousIteration()
for(int i = 0; i < n; i++)
 UpdatePressureWithEarlyZCulling()
SubtractGradient()

The details of the algorithm can be found in Section 4.
After each step of the simulation, we render the density
buffer to the screen in a single pass:
RenderDensityToScreen()

Due to current hardware limitations, bilinear interpolation
of 32-bit floating point buffers must be performed in the
pixel shader. This can be very costly if the screen resolu-
tion is significantly higher than the simulation grid
resolution. In order to reduce the rendering cost, we again

Page 3 of 6

employ early-Z culling to skip this computation on cells
that have little or no density:
SetZBufferUsingDensity()
RenderDensityToScreenWithEarlyZCulling()

Additional details of this particular optimization can be
found in Section 5.

(a) Pressure buffer for

simulation culling
(b) Culled pixels during
rendering tagged in red

Figure 2: Visualization of early-z culling.
4. Projection optimization
In this section, we describe an optimization that is per-
formed during the projection step, the most expensive step
of the simulation. This step is performed as a series of
rendering passes to solve a linear system using a relaxation
method. This optimization could also be considered for the
diffusion step when simulating highly viscous fluid.
When approximating the solution to this linear system, the
higher the number of iterations (rendering passes), the more
accurate the result. Instead of performing the same number
of passes on all cells, we perform more passes on regions
where the pressure is higher and fewer passes on regions
with little or no pressure. This is accomplished by perform-
ing an additional inexpensive rendering pass that sets the z
value of each cell in the simulation based on the maximum
value of that cell and a four of its nearby cells from the
pressure buffer of the previous iteration of the simulation.
We simply set the z value for a particular cell x to be

depth = saturate(αP + β)

where P is the maximum pressure among the neighbors of
x, and α and β are constants. We achieved best results with
α = 2.0 and β = 0.1. The β value ensures that, even where
the pressure is very small, at least some pressure computa-
tion passes will be performed.
We take into account the pressure of the neighbors of x,
because each relaxation step computes the new pressure for
a given cell as a function of their neighbors. Thus, cells
with high pressure may significantly increase the pressure
of cells around it. In our experiments we looked at
neighbors that were 2 cells away in each of the four direc-
tions.

After priming the z buffer, we perform the pressure compu-
tation passes. In order to reduce this computation, we set
the depth compare state to “less than or equal” and linearly
increase the z value on each of the projection passes. On
the first pass, the z value is set to 1/N, where N is the total
number of pressure passes. On the second pass it is 2/N,
and so on. Therefore, on the first pass, all cells are proc-
essed (because of our β value), and on subsequent passes,
the number of cells that are processed gradually decreases.
Figure 2a shows the pressure buffer which is used to set the
z buffer that culls the projection computation. Darker
values indicate regions of lower pressure, where fewer
iterations need to be performed.
The passes that enforce boundary conditions on the pres-
sure computation are not culled. However, since they only
affect the pixels on the grid boundaries, it does not hinder
the performance of the heavily fill-bound simulation.
Note that this optimization is an approximation and does
not necessarily yield physically correct results. However,
the visual improvement of using this method is evident, and
performing 50 pressure computation passes with this cull-
ing technique yields more realistic results than performing
10 pressure computation passes with the brute force algo-
rithm in the same amount of time.

(a) 3D view (b) Density buffer (c) Pressure buffer

Figure 3: Visualization of 3D flow
and the density and pressure buffers.

4.1. Extension to 3D fluid flow
We also extended the above optimization to 3D fluid flow
simulation. Harris [2003] introduces the idea of simulating
3D flow using a tiled 2D texture (Figure 3ab). This allows
each step of the simulation to be performed with one single
pass for all the slices, without having to switch render
targets. The downside is that the texture coordinate compu-
tation is a bit more expensive and proper care must be
taken at the boundaries of the slices to correctly account for
boundary conditions. However, using this technique is
more efficient than having to constantly switch render
targets.
Our optimization naturally extends to 3D flow. As in 2D
flow, pressure computation is performed by doing multiple
passes to update the pressure buffer (Figure 3c). Similarly,
we perform one pass to prime the z buffer based on the
pressure of the previous simulation iteration, and then,
when performing the pressure computation passes, we
perform early-z culling the same way we did with 2D flow.

Page 4 of 6

Passes to enforce boundary conditions are rendered as
several thin quadrilaterals that tile the texture square. As in
the 2D simulation, during these passes, none of the cells are
culled.

5. Rendering optimization
The next optimization is performed at rendering time.
When rendering the 32-bit floating point density buffer to
the screen, bilinear interpolation must be performed in the
pixel shader. This computation can be expensive, especially
if the dimensions of render target are significantly higher
than those of the fluid simulation. In order to avoid apply-
ing the bilinear interpolation shader to regions of the screen
that have very small density, prior to rendering the contents
of the density buffer, we perform an inexpensive rendering
pass that simply sets the z buffer value to the density of that
particular pixel using “nearest” as the texture lookup filter.
When rendering, we set the depth compare state to “less
than or equal”, and set the z value to a small constant ε in
the vertex shader (e.g., 0.01). Thus, all pixels whose densi-
ties are smaller than ε are culled. In Figure 2b, all pixels
that were too dark to be visible were culled and are tagged
in red for visualization purposes. Figure 1b shows the final
rendering without the tagged pixels.
Note that this optimization does not directly affect the
simulation, since it is only used for rendering. Since less
computation time is used for rendering, this optimization
does indirectly affect the simulation, because more compu-
tation time can be used by the simulation to improve its
quality. As shown in the results section, this optimization is
particularly useful for applications that zoom in to regions
of the flow, or render the result to high resolution buffers.
While the projection optimization works well with 3D
flow, unfortunately our rendering optimization does not
yield an improvement for 3D flow. The cost of an addi-
tional pass for each slice, and of switching shaders multiple
times is very high.

6. Results
In this section, we present some results of applying the
optimizations described in the earlier sections. Figure 1
compares a brute-force simulation and a simulation with
early-z culling. Both examples simulate and render the
512×512 simulation grid at 53 frames per second. Since the
brute-force approach performs the same number of pressure
computations passes on all cells, it only manages 10 pres-
sure computation passes. Our early-z method performs
somewhere between 5 and 50 pressure computation passes,
depending on the value in Figure 2a. Since our optimization
allows for a high number of passes on areas of high pres-
sure, it yields a more realistic result. Our method also
renders the flow to a 512×512 window using the optimiza-
tion outlined in Section 5. However, for this example the
rendering optimization does not yield a significant im-
provement, as will be made clear below.

Figure 4 graphs the performance of our 2D fluid simulation
with and without each of our optimizations. The frame-rate
is on the y-axis, while the resolution is on the x-axis (we
have data points for 128×128, 256×256, 512×512, and
1024×1024 simulation grid resolutions). In each case, the
screen resolution for the rendered output is the same as the
simulation grid resolution. Five curves are plotted. One
using the brute-force method, two using the simulation
optimization, and two using both the simulation and render-
ing optimizations. When the optimizations are used, the
frame rate is variable, so we use two curves for measuring
performance, one without any flow, and one with the entire
grid filled with flow. The actual frame rate will be some-
where between these two curves, depending on how much
density and pressure is present. As evidenced by the three
lowest curves on the graph, the penalty incurred by having
the extra pass to set the z buffer is extremely small. On the
other hand, if significant portions of the screen have no
flow, the savings can be significant with no visual loss in
quality. At 128×128, the savings due to the simulation
optimization can be up to a factor of two with no visual
loss in simulation quality. At 1024×1024, the savings can
be up to a factor of three. The improvement due to the
rendering optimization was not significant in this experi-
ment due to the fact that the resolution of the output
window is the same as the grid resolution. Since the bulk of
the computation happens during the projection step of the
simulation, the resolution of the output window would have
to be larger than that of the simulation grid for the render-
ing optimization to yield significant improvement.
Figure 5 graphs the same experiment, but with the output
window resolution fixed at 1024×1024. In this case, if the
simulation grid has significantly lower resolution, the
savings due to the rendering optimization are significant—
nearly a factor of two for the 128×128 simulation grid.
Figures 7 and 8 show different examples in which the
pressure buffer is not cleared from one pass to the next
(causing extremely swirling-like flow). In Figure 7, the
small number of passes in the pressure buffer coupled with
a slow frame rate results in a velocity field that is not mass
conserving. In contrast, when using our culling techniques,
the result is significantly more stable.
3D Flow. Figure 9 shows results applied to a 128×128×16
3D fluid flow simulation. Note that, although the improve-
ment is not as significant as in the 2D simulations, the
result using our techniques is more realistic.
Blockers. These culling techniques are also very suitable
for fluid flow simulations with blockers. Since no computa-
tion needs to be performed on most cells that are blocked
(approximately half of the cells in Figure 6), these methods
can further reduce computational costs. Note that blocked
cells that have neighbors that are not blocked cannot be
culled and need to be processed in order to yield the proper
effect when fluid collides with the blocker.

Page 5 of 6

0

50

100

150

200

250

300

350

0 200000 400000 600000 800000 1000000 1200000

Resolution (# of cells)

FP
S

Early-z projection+rendering
Early-z projection
Brute force
Early-z projection (fill)
Early-z projection+rendering (fill)

Figure 4: Timings of the different culling methods

(screen resolution set to simulation resolution)

0

50

100

150

200

250

300

0 200000 400000 600000 800000 1000000 1200000

Resolution (# of cells)

FP
S

Early-z projection+rendering
Early-z projection
Brute force
Early-z projection (fill)
Early-z projection+rendering (fill)

Figure 5: Timings of the different culling methods

(1024×1024 screen resolution)
7. Summary and future work
We have presented optimization techniques that take ad-
vantage of early-z culling to efficiently simulate and render
fluid flow.
The methods presented in this paper are straightforward to
implement and yield a significant improvement in render-
ing speed for the same quality, or conversely, an
improvement in quality for a given frame rate. Our results
demonstrate that we obtain simulations that look more
physically accurate than brute-force simulations at a given
rendering speed.
Our method excels in scenes where flow is concentrated on
specific regions of the grid, such as scenes with blockers.

The main limitation of this approach is that it does not yield
a significant improvement to simulations that have a large
amount of fluid over the entire simulation grid. But even in
the worst case, our simulations will not significantly impair
the quality or rendering speed in such settings, as evi-
denced by Figures 4 and 5.
For future work, it would be interesting to further investi-
gate methods to take advantage of the locality of fluid in
the simulation. We are currently investigating a method
with adaptive grid sample locations. A hierarchical culling
approach could also yield significant savings.

Figure 6: Pink flow colliding with blocker in Van
Gogh’s Starry Night.

References
Chorin, A. 1967. A Numerical Method for Solving Incompressible

Viscous Flow Problems. Journal of Computational Physics 2, pages 12–
26.

Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual Simulation of Smoke. In
Proceedings of SIGGRAPH 2001, pages 15–22.

Harris, M. J., Baxter, W. V., Scheuermann, T., and Lastra, A. 2003.
Simulation of cloud dynamics on graphics hardware. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, pages 92–101.

Harris, M. J. 2003b. Real-time cloud simulation and rendering. Ph.D.
dissertation. University of North Carolina at Chapel Hill,, 2003.

Nguyen, D., Fedkiw, R., and Jensen, H. 2002. Physically Based Modeling
and Animation of Fire. In Proceedings of SIGGRAPH 2000, pages 736–
744.

Rasmussen N., Nguyen, D. Q., Geiger, W., and Fedkiw, R. 2003. Smoke
simulation for large scale phenomena. In Proceedings of SIGGRAPH
2003, pages 703-715.

Stam, J. 1999. Stable fluids. In Proceedings of SIGGRAPH 1999, pages
121–128.

Page 6 of 6

(a) Brute force (3 projection passes) (b) Early-z (up to 15 projection passes)
Figure 7: Side by side of a 1024×1024 2D simulation. Both simulations render at 25fps. The small number

of passes on the brute-force example causes the velocity field not to be mass conserving.

(a) Brute force (5fps) (b) Early-z (16fps)
Figure 8: Side by side of a 1024×1024 2D simulation. Both simulations have 40 projection passes. The
lower frame rate on the brute-force example causes artifacts when flow is inserted at a constant, faster

rate (e.g., interactive mouse input).

(a) Brute force (3 projection passes) (b) Early-z (up to 30 projection passes)
Figure 9: 128×128×16 3D flow simulation. Both examples render at 25fps.

