
DETECTION OF EYE LOCATIONS IN UNCONSTRAINED VISUAL IMAGES

Ravi Kothari, and Jason L. Mitchell

Department of Electrical & Computer Engineering and Computer Science

University of Cincinnati

Cincinnati, OH 45221-0030

E-Mail: ravi.kothari@uc.edu

ABSTRACT

This paper describes a computational approach for ac-
curately determining the location of human eyes in un-
constrained monoscopic gray level images. The pro-
posed method is based on exploiting the flow field char-
acteristics that arise due to the presence of a dark iris
surrounded by a light sclera. A novel aspect of the pro-
posed method lies in its use of both spatial and tempo-
ral information to detect the location of the eyes. The
spatial processing utilizes flow field information to se-
lect a pool of potential candidate locations for the eyes.
Temporal processing uses the principle of continuity to
filter out the actual location of the eyes from the pool
of potential candidates. Extensions for gaze angle de-
termination, and the tracking of human point-of-regard
are indicated.

1. INTRODUCTION

The ability to estimate the location, gaze angle, and
the trajectory of eyes from unconstrained visual im-
ages finds application in the design and implementa-
tion of next-generation man-machine interfaces. For
example, such a system would allow the eyes to act
as an alternate input modality for computer users in
general and disabled users in particular [3] by replac-
ing point-and-click of a mouse with glance-and-blink of
the eyes (see also [4]). In addition to potential use as
a pointing device, it is also possible to make use of
point-of-regard data to enhance human computer in-
teraction in ways which are not apparent to the user.
For example, a user may be presented with additional
information based upon current area(s) of interest in
the visual display—as determined by recent gaze fixa-
tions [5]. Additionally, it would be possible to render
complex images such that maximum detail is present at
the user’s current area of interest while fine details out-
side of the area of interest are ignored—until such time
as the user’s focus of attention shifts. Such a system
would give the impression of displaying higher quality

graphics than might ordinarily be capable at a given
throughput. Further, if the movements of the eyes at
different levels of alertness can be characterized, then
it may be possible to assess operator vigilance.

Invasive eye-tracking techniques have been employed
for a number of years by cognitive psychologists seek-
ing to study eye movements with regard to perception
[6]. Such methods involved mounting cumbersome de-
vices on a subject’s head and often required the head to
be immobilized by means of a bite-plate or other sta-
bilizing mechanism. These techniques have produced
acceptable results in the controlled scenarios of cogni-
tive psychology experiments, but they are undesirable
if one hopes to leave the subject completely uninhib-
ited. A truly non-invasive eye-tracking system should
make no assumptions about lighting conditions, should
not inhibit the subject(s), or alter their surroundings
in an appreciable way. More recently, a number of non-
invasive eye-location and eye-tracking systems employ-
ing digital cameras have been proposed. These systems
all use monoscopic grayscale images of the subject be-
ing tracked. Vincent [7] uses a hierarchical technique
which employs neural networks to locate the features.
The first stage performs a coarse segmentation of the
image by locating areas in a low-resolution version of
the original image which may contain the desired fea-
tures (i.e. the left eye, right eye and mouth). The high
resolution search areas isolated by the first stage are
then processed by another neural network to extract
more detailed information about the precise position
of the eyes. Starker [5], and Hutchinson [3] place an in-
frared light source in the location of the camera and use
a camera which is sensitive to infrared. Due to the re-
flectivity of the eye, a bright specular reflection appears
on its surface (see also [1]). With this technique, the
gross location of the eyes are determined and the image
may be processed further to extract detailed point-of-
regard information. Additionally, the location of the
infrared spot itself may be used since it will remain es-
sentially static relative to the moving pupil. Once the



eyes or potential candidates for eyes are located within
the image, detailed information about their exact posi-
tion must be extracted. Yuille [8] uses deformable tem-
plates to describe eye-location and shape. It is assumed
that a gross image segmentation has already been per-
formed (i.e. the center of the deformable templates are
close to their eventual values following minimization of
an energy functional).
In the following, we propose a method which ac-

curately locates eyes in monoscopic gray scale images
under normal lighting conditions and a variety of poses
without using infrared reflections to locate the irises.
A novel aspect of the proposed method lies in its use
of both spatial and temporal information to detect the
location of the eyes. The spatial processing utilizes
flow field (gradient direction field) information to se-
lect a pool of potential candidate locations for the eyes.
Temporal processing uses the principle of continuity to
filter out the actual location of the eyes from the pool
of potential candidates.

2. DETERMINING EYE LOCATION

The most significant feature of the eyes, in a grayscale
image, are the iris’ ellipsoidal shape and the stark con-
trast between the iris and the surrounding area—the
sclera. A dark circular area, like the iris, on a light
background, causes an outwardly radiating flow field to
appear in a gradient direction plot of the image. Figure
1 shows the local gradient direction at each location of
the image, and is a typical example of the outwardly
radiating flow field around the iris.

Figure 1: Gradient directions in a typical image.

Since the flow field around an iris radiates outwards
it must intersect at a point if extrapolated in a direc-
tion opposite to the gradient (the gradient points in
the direction of increase of a function, hence points
outwards — from the darker iris to the lighter sclera).
We thus use a 2-dimensional array of bins, initialized

to 0, which serve as accumulators. A line drawn at
each edge point along the direction opposite the gradi-
ent passes through several of these bins. The bins are
incremented each time one such line passes through it.
This process is shown for two arbitrary local gradients
in Figure 2. Note that the bin which lies at the inter-
section of the two local gradients has the largest accu-
mulation (shown by a lighter shade). This illustrates
the fact that a bin which lies at the intersection of lines
in the direction of local gradients will be incremented
a large number of times compared to bins elsewhere in
the image. This is the basis for our algorithm. It is
clear that a radiating flow field such as that found at
an iris will cause a similar additive effect in the bin(s)
located approximately in the center of the iris.

Figure 2: Illustration of the bin-incrementing scheme
for two arbitrary local gradients. The broken lines sep-
arate the pixels in the image, while the solid lines show
the bins. Lighter bins indicate greater accumulation.

There are two variables in the above process which
have an impact both in terms of efficiency and effective-
ness. The size of each bin (in terms of pixels) is one of
these. Larger bins require less computational accuracy
at the expense of localization accuracy. Through ex-
perimentation we have found that a bin size of 5 pixels
provides a reasonable trade-off between localization ac-
curacy and computational efficacy for a wide range of
camera-subject distances (≈ 3—12 feet). The second
factor which adds to the computational efficiency is to
only consider gradients of significant magnitude (e.g.
above the rms magnitude). This serves to reduce com-
putation and is unlikely to filter out the local gradients
along the edges of the iris due to their high magnitude.

In an ideal situation one might anticipate that two
bins (corresponding to the two eyes) will show the largest



accumulations. Due to the background noise, patterns
on the subject’s clothes etc. it is likely that more than
two bins show comparably large accumulations. We
have dealt with this in two ways. The first of these
methods uses further processing of the bin accumula-
tions (spatial processing), and the second uses tempo-
ral information to ascertain the correct location of the
eyes. We discuss the two methods below.

Method 1: To obtain the correct eye locations from
a pool of potential candidates, we use two heuristics:
(i) the bin accumulations for both the eyes should be
reasonably close, (ii) the eyes should be spatially close
in terms of the y coordinate. Both the conditions are
reasonable but only for an upright subject. Denoting
the bin accumulations at location (i, j) by bij , the above
translates into finding the two bins which minimize:

J = (bij − bi′j′)
2 + λ(j − j′)2 (1)

where, (i, j) and (i′, j′) denote the locations of the two
bins, and λ controls the relative weighting that each of
the above two criteria have. To prevent a combinatorial
growth of the bin pairs considered, one might limit the
search to r bins having the highest accumulations.

Method 2: The second method of choosing the cor-
rect eye locations from a pool of prospective candidates
relies on the principle of continuity in the location of
the eyes from one frame to the next. Succinctly,

B
(k+1)
ij =

∑
f(B(k)

mn)e
−τ + b

(k+1)
ij (2)

where, k has been added to index the frames (time),
and τ controls the rate at which the cumulative accu-
mulations decay, mn denotes the bin within a spatial
neighborhood bin ij, and f is a function that rapidly
decreases monotonically with the distance from bin ij.
Thus, the total bin accumulation of each frame is a
proportion of the total accumulation of itself and its
neighbors, and its current accumulation. There are two
advantages of this method: (i) it does not allow incon-
sistent results of a single frame to eliminate the correct
eye locations, and (ii) it provides a more sophisticated
method to mark the areas of the next frame to which
processing should be restricted (those areas with the
highest cumulative accumulations). Results of the this
second method are particularly robust if a one time
’calibration’ step is performed which identifies the eye
locations. Indeed, a combination of methods 1 and 2
can be used if the assumptions of method 1 can be
justified in a particular application.
We now show the results of the above algorithm on

a set of sample images (Figure 3) chosen to maximize
typical variations in facial characteristics (e.g. glasses,
beard, long hair etc.).

(a) (b)
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Figure 3: Test images

The results of the bin incrementing process are shown
in Figure 4. Low bin counts are represented by dark
pixels while high bin counts are shown as bright pixels.

Figure 5 shows the result of further spatial process-
ing based on method 1. Shown in Figure 5 are the two
bins which minimized the cost function of equation (1),
overlaid on the original images. Note the correct loca-
tion of the eyes in each instance.

3. DISCUSSION AND CONCLUSION

In this paper we presented a principled approach to-
wards detecting the locations of human eyes in uncon-
strained images. We have obtained reliable results over
a wide range of subjects using the approach presented
above. Extensions to allow for gaze angle determina-
tion and tracking the human point-of-regard are un-
derway. Our approach to gaze angle determination is
based on the change in the eccentricity of the iris as the
gaze angle increasingly deviates from 0deg (straight
ahead), adjusted based on deviation of the vertical axis
of symmetry of the face with the 0 deg line. Due to the
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Figure 4: Bins for the images of Figure 3

presence of saccadic and smooth movements in the eye,
our approach to tracking human point-of-regard relies
on the use of modular neural networks composed of two
experts, each individually responsible for saccadic and
smooth movements of the eyes [9].
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