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ABSTRACT

The presence of saccadic and smooth movements in the
eye makes modular neural networks composed of two
experts, each individually responsible for saccadic and
smooth movements of the eyes, well suited for the track-
ing of human point-of-regard. To establish a basis for
comparison on our data, we also consider a scalar ARMA
model and a (vector) state space model. The purpose of
this analysis is to build a reasonable model of human eye
motion to use in prediction of point-of-regard. The abil-
ity to predict the point-of-regard of a human subject has
applications in eye-tracking for man-machine interfacing,
vigilance detection, and as a tool in cognitive psychology.

I INTRODUCTION

The ability to track point-of-regard is a necessary step towards using the
eyes as an alternate input modality for computer users in general and dis-
abled users in particular [1]. In addition, accurate tracking of the point of
regard might permit the realization of complex displays in which an image
is displayed with a higher resolution around point-of-regard regions, and in
the automated assessment of operator vigilance. For such a system to be of
practical use, it must be unobtrusive and perform the necessary operations
of detecting the locations of the eyes [2], determining the point-of-regard,
and anticipating (forecasting) the point-of-regard. Over the past few years
a significant amount of literature with clinical or physiological measurement
inclinations have appeared on the analysis of eye tracking movements [3]-[5

(see also [6]). Since eye movements can be characterized by saccadic (fast

and smooth (slow) movements, it seems natural to use modular neural net-
works composed of two experts, each individually responsible for saccadic

* Author to whom correspondence should be addressed

0-7803-3550-3/968$5.00©1996
482



and smooth movements of the eyes. To establish a basis for comparison on
our data, we also consider a scalar ARMA model and a (vector) state space
model.

The data we consider is obtained as a set of {(z,y) : z € {0,1,...,511},y €
{0,1,...,511}} locations of the point-of-regard of a radiographer examining a -
chest x-ray, 26.67 x 26.67 cms, from a distance of 55 cms. The point-of-regard
of the left eye was sampled at 51.5 Hz, using an ASL4000SU head mounted
optics system, a miniature video camera, and software which tracks the pupil
center and the first Purkinjie reflection of an incident IR source. The head
position was monitored using a Flock of Birds magnetic head tracker. The
two signals were integrated to calculate point-of-regard. A 9-point square
dot pattern was used to calibrate the display space to yield an accuracy of
0.25 deg—0.50 deg, as subtended at the observer’s eye. The point-of-regard
data for a full 30 seconds is shown in Figure 1.
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Figure 1: 30 seconds of point-of-regard data sampled at 51.5 Hz. The figure on the
left shows the location (z,y), while the center and right panes show the z and y
co-ordinates as functions of time

I ScaLArR ARMA MODEL

We begin the discussion of eye-movement prediction using simple ARMA
modeling techniques [7],[8] to predict each component of the vector time se-
ries separately. It is clear, however, that there is some dynamic interdepen-
dence between the two components of the vector time series and it would be
advantageous to use both when building a model. Thus a state space model
of this vector-valued time indexed data is presented in the next section.

Figure 2 shows the sample autocorrelation function (AF) of the data. One
may observe that neither the time series of the , nor the time series of the
y component is stationary. A first difference operator, as in many cases, is
sufficient to transform the non-stationary time series values into stationary
time series values (see the AF and the sample partial autocorrelation function
(PAF) in Figure 3).
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Figure 2: Autocorrelation function of the z co-ordinate (left), and the y co-ordinate
time series (right)
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Figure 3: Autocorrelation function and partial autocorrelation function of the first
difference of the x co-ordinate (left), and the first difference of the y co-ordinate
time series (right)

Thus a generic ARMA model of order (p,q), as given below, can be used to
track and predict the point-of-regard co-ordinates.

$p(B)2t = & + 04(B)a: (1)
where, z; are the stationary time series values, ¢p(B) = (1 — ¢, B — ¢$2B? —
... — ¢pBP), and 64,(B) = (1 — 6,B — 0;B®> — ... — §,B7), § is a constant

term, a; are 'random-shocks’, and B*z; = z;_. In both the z and y cases,
the AF displays a cut off after lag 1, and the PAF displays cut off after lag
1 or dies down fairly rapidly. Thus, we reduce the above ARMA model to a
MA model of order 1, with § = u, — the true mean of the stationary time
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series. Equation (1) above thus reduces to:
24 = p;+a; — 61044 (2)

where z; = x4 — z4_1, and 2; = Yy — Y41 for the z and y components of the
point-of-regard respectively.

The model parameter 6; was estimated using least squares with the first
25 seconds of the data, with the remaining 5 seconds used to determine
the model’s one-step-ahead prediction accuracy. The model parameter (6,)
for the z-component was found to be 0.45211, while for the y-component it
was 0.51557. Figure 4 shows the performance of the model of equation (2)
for the z-component and the y-component respectively, and Figure 5 shows
the difference between the actual time series values and the model output.
Despite the simplicity of the model and despite ignoring the coupling between
the z and y components of the series, one obtains a fairly accurate prediction
of the point-of-regard. However, there remains a significant error at locations
where large excursions of the point-of-regard occur. Statistics of the residuals
in doing the one-step-ahead prediction are summarized in Table L.

MA(1) for X component
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Figure 4: Performance of a first order moving average model at one-step-ahead
prediction of the z-component (top), and the y-component (bottom) of the point-
of-regard. The model output is shown by broken lines

485



MA(1) residuals for x-component
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Figure 5: Difference between the actual time series values and the moving average
model output

III STATE SPACE MODEL

A state space model is a natural choice to capture the dynamic interdepen-
dence between components of the vector-valued data. Theoretically however,
state space models can be transformed into ARMA models systematically.
The main motivation of using the state space model is thus to examine the
benefits, if any, resulting from considering the interdependence between com-
ponents of the vector-valued data. The state space model was generated using
SAS [9] which proceeds by formulating a multivariate AR model whose order
is chosen to minimize Akaike’s Information Criterion (AIC) [10] and subse-
quently introducing MA terms to improve the fit [11]. The state space model
thus obtained from the first 25 seconds of the time series is given by:

0 0 1 0 1 0

e = 0 0 0 1 g 0 1
t+1= | 0019 0.006 —0.101 —-0.009 |4tt | 0.439 —0.001 | %

0.021 —0.039 —0.033  0.187 0.159  0.521

(3)
where, Z; = [:nt Yt Tpg yHl}T. Figure 6 shows the performance of
the model of equation (3) for the z-component and the y-component, and
Figure 7 shows the difference between the actual time series values and the
model output. As anticipated, developing a multivariate model to explicitly
account for the coupling between the z and the y components has led to
better performance. However, as in the case of the scalar ARMA model,
there still remains a significant error at locations where large excursions of
the point-of-regard occur. Statistics of the residuals in doing the one-step-
ahead prediction are summarized in Table 1.
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State space output for x-component
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Figure 6: Performance of the state space model at one-step-ahead prediction of the
z-component (top), and y-component (bottom) of the point-of-regard. The model
output is shown by broken lines
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Figure 7: Difference between the actual time series values and the state space model
output
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IV MoDULAR NEURAL NETWORK MODEL

Modular neural networks consist of a group of networks, called local experts,
and a gating network which is responsible for mediating the output of the local
experts to form the final output of the system. The local expert networks
and the gating networks are simultaneously trained [12],[13]. Assuming the

output of the k*® local expert to follow a probability density function given
by:

p(yr) = e 0-5]ld—yxl? (4)

The output of the entire network can then be expressed by a mixture prob-
ability density function:

M
_ ; 2
ply) =Y gre  OSlldmw (5)
k=1

where, M is the number of local experts. One can thus perform maxi-

mum likelihood estimation i.e. for a given set of outputs ¥ = {y¥ : t =
1,2,...,T}, we maximize:

7= [ [T

t=1
T M
o Zin [nge_o‘slld“yklz]
=3 k=1
T
= J® (6)

o+
=

The output of the gating network is based on the softmax activation function:

ek

e o

where uy, is the weighted sum received by a gating neuron.

Replacing gi from (7), into (6), we obtain a cost function in terms of the
welghts of the experts (yi is a function of each local expert weights), and the
gating network (g, is a function of the weights of the gating network). Using
gradient ascent, one can thus maximize (6) [12],[13].

Figures 8 and 9 show the performance of the modular neural network model,
consisting of two experts, each a multi-layered network with a single hidden
layer of 10 hidden neurons, 4 inputs (the location co-ordinates at the current
and previous time instants), and two outputs (the co-ordinates at the next
time instant). We note the reduced one-step-ahead prediction error at loca-
tions where large excursions of the point-of-regard occur, while maintaining
a maximum error of a few pixels during the smooth eye movements.
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Figure 8: Performance of the modular neural network model at one-step-ahead
prediction of the z-component (top), and y-component (bottom) of the point-of-
regard. The model output is shown by broken lines
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Figure 9: Difference between the actual time series values and the modular neural
network model output
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V DiscussioN AND CONCLUSION

Statistics for the three models considered in this paper are shown below:

T-component y-component
Model o] o o] o ]
ARMA 4.4835 [ 10.3077 | 3.4192 | 5.2552

State space | 4.7748 | 10.3830 | 3.9552 | 5.1708
Mod NN 5.6708 | 6.6523 | 2.8154 | 3.7025

Table I: Statistics of the one-step-ahead prediction errors for the different
models

Our results show that the modular neural network model performs better
than both the scalar MA and the vector state space model, specially when
the point-of-regard undergoes rapid excursions. Additionally, these results
must be seen in the context of the effort involved in creating the state space
and the modular neural network model. While, the selection of the state
space model order was carefully selected using AIC, the model order for the
modular neural network was chosen arbitrarily. In addition, the evolution of
the state space model from an initial AR to an ARMA model is a complex
optimization process. Additional research with more complex experts in the
modular neural networks might lead to a model of choice in tracking the
point-of-regard.
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