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ABSTRACT

The presence of saccadic and smooth movements in the
eye makes modular neural networks composed of two
experts, each individually responsible for saccadic and
smooth movements of the eyes, well suited for the track-
ing of human point-of-regard. To establish a basis for
comparison on our data, we also consider a scalar ARMA
model and a (vector) state space model. The purpose of
this analysis is to build a reasonable model of human eye
motion to use in prediction of point-of-regard. The abil-
ity to predict the point-of-regard of a human subject has
applications in eye-tracking for man-machine interfacing,
vigilance detection, and as a tool in cognitive psychology.

I INTRODUCTION

The ability to track point-of-regard is a necessary step towards using the
eyes as an alternate input modality for computer users in general and dis-
abled users in particular [1]. In addition, accurate tracking of the point of
regard might permit the realization of complex displays in which an image
is displayed with a higher resolution around point-of-regard regions, and in
the automated assessment of operator vigilance. For such a system to be of
practical use, it must be unobtrusive and perform the necessary operations
of detecting the locations of the eyes [2], determining the point-of-regard,
and anticipating (forecasting) the point-of-regard. Over the past few years
a significant amount of literature with clinical or physiological measurement
inclinations have appeared on the analysis of eye tracking movements [3]-[5

(see also [6]). Since eye movements can be characterized by saccadic (fast

and smooth (slow) movements, it seems natural to use modular neural net-
works composed of two experts, each individually responsible for saccadic
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and smooth movements of the eyes. To establish a basis for comparison on
our data, we also consider a scalar ARMA model and a (vector) state space
model.

The data we consider is obtained as a set of {(z,y) : z € {0,1,...,511},y €
{0,1,...,511}} locations of the point-of-regard of a radiographer examining a -
chest x-ray, 26.67 x 26.67 cms, from a distance of 55 cms. The point-of-regard
of the left eye was sampled at 51.5 Hz, using an ASL4000SU head mounted
optics system, a miniature video camera, and software which tracks the pupil
center and the first Purkinjie reflection of an incident IR source. The head
position was monitored using a Flock of Birds magnetic head tracker. The
two signals were integrated to calculate point-of-regard. A 9-point square
dot pattern was used to calibrate the display space to yield an accuracy of
0.25 deg—0.50 deg, as subtended at the observer’s eye. The point-of-regard
data for a full 30 seconds is shown in Figure 1.
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Figure 1: 30 seconds of point-of-regard data sampled at 51.5 Hz. The figure on the
left shows the location (z,y), while the center and right panes show the z and y
co-ordinates as functions of time

I ScaLArR ARMA MODEL

We begin the discussion of eye-movement prediction using simple ARMA
modeling techniques [7],[8] to predict each component of the vector time se-
ries separately. It is clear, however, that there is some dynamic interdepen-
dence between the two components of the vector time series and it would be
advantageous to use both when building a model. Thus a state space model
of this vector-valued time indexed data is presented in the next section.

Figure 2 shows the sample autocorrelation function (AF) of the data. One
may observe that neither the time series of the , nor the time series of the
y component is stationary. A first difference operator, as in many cases, is
sufficient to transform the non-stationary time series values into stationary
time series values (see the AF and the sample partial autocorrelation function
(PAF) in Figure 3).
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Figure 2: Autocorrelation function of the z co-ordinate (left), and the y co-ordinate
time series (right)
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Figure 3: Autocorrelation function and partial autocorrelation function of the first
difference of the x co-ordinate (left), and the first difference of the y co-ordinate
time series (right)

Thus a generic ARMA model of order (p,q), as given below, can be used to
track and predict the point-of-regard co-ordinates.

$p(B)2t = & + 04(B)a: (1)
where, z; are the stationary time series values, ¢p(B) = (1 — ¢, B — ¢$2B? —
... — ¢pBP), and 64,(B) = (1 — 6,B — 0;B®> — ... — §,B7), § is a constant

term, a; are 'random-shocks’, and B*z; = z;_. In both the z and y cases,
the AF displays a cut off after lag 1, and the PAF displays cut off after lag
1 or dies down fairly rapidly. Thus, we reduce the above ARMA model to a
MA model of order 1, with § = u, — the true mean of the stationary time
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series. Equation (1) above thus reduces to:
24 = p;+a; — 61044 (2)

where z; = x4 — z4_1, and 2; = Yy — Y41 for the z and y components of the
point-of-regard respectively.

The model parameter 6; was estimated using least squares with the first
25 seconds of the data, with the remaining 5 seconds used to determine
the model’s one-step-ahead prediction accuracy. The model parameter (6,)
for the z-component was found to be 0.45211, while for the y-component it
was 0.51557. Figure 4 shows the performance of the model of equation (2)
for the z-component and the y-component respectively, and Figure 5 shows
the difference between the actual time series values and the model output.
Despite the simplicity of the model and despite ignoring the coupling between
the z and y components of the series, one obtains a fairly accurate prediction
of the point-of-regard. However, there remains a significant error at locations
where large excursions of the point-of-regard occur. Statistics of the residuals
in doing the one-step-ahead prediction are summarized in Table L.
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Figure 4: Performance of a first order moving average model at one-step-ahead
prediction of the z-component (top), and the y-component (bottom) of the point-
of-regard. The model output is shown by broken lines
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