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Introduction 
 

In last year’s course, we covered applications that use explicit early-z culling as a 
form of flow control for graphics hardware. As described below, that method allowed the 
GPU to selective skip pixel shader execution for specific pixels, thus culling the amount 
of unnecessary computation. 

 
With the advent of graphics hardware supporting dynamic flow control on the 

pixel shader, unnecessary computation can now also be avoided by strategically placing 
conditional statements in the pixel shader. In this talk we will describe the tradeoffs 
between using these two approaches and show some applications of each optimization. 
 
Early-Z 
 
 Prior to execution of the pixel shader, the GPU performs a check of the 
interpolated z value against the z value in the z buffer.  This occurs for any pixels which 
passed the hierarchical z test and which are actually going to use the primitive’s 
interpolated z (rather than compute z in the pixel shader itself).  This additional check 
provides not only an added efficiency win when using long, costly pixel shaders, but also 
provides a form of pixel-level control flow in specific situations.  In a number of 
applications such as volume rendering, skin shading and fluid simulation, the z buffer can 
be thought of as containing condition codes governing the execution of expensive pixel 
shaders.  Inserting inexpensive rendering passes whose only job is to appropriately set the 
“condition codes” for subsequent expensive rendering passes can increase the 
performance of several applications. 
 

Early-Z culling also takes advantage of hierarchical-z culling that is present on 
current graphics hardware. So, 8x8 pixel blocks can be culled in unison by the hardware 
if they all fail the z test. Thus, explicit early-z culling is especially useful in 
circumstances where large regions of the screen have the same “condition code”, whereas 
if the condition codes have a high-frequency checkered pattern, the optimization is not as 
significant. 
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Dynamic flow control 
 

The ps_3_0 shader model supports dynamic flow control during shader execution. 
This feature allows efficient culling of computation by using conditionals in the pixel 
shader. One example in which such a feature is useful is for skipping all the light 
computation the surface is facing away from the light. Another example is a fully fogged 
pixel. There are several other instances in which such an optimization is useful. 

 
In previous shading models, in which dynamic flow control was not supported, 

both paths of a conditional had to be followed and a lerp() instruction was used to 
“blend” between these results according to the result of the conditional expression.  Now 
the GPU can selectively execute certain instructions within the shader. 

 
Note that shaders generally execute in lock-step within a small pixel 

neighborhood. Dynamic branching is not always a performance win and can have some 
inefficiencies, especially if different pixels take different paths. Also, oftentimes it is 
cheaper for the hardware to take both paths rather than execute the branch even if all 
pixels take the same path. The HLSL compiler analyses the tradeoffs between emitting an 
algebraic expression versus using dynamic flow control and emits the one it expects to be 
cheapest. 
  
Tradeoffs between early-z and dynamic flow control 
 
Early-Z Culling: 

• Cost: Oftentimes requires an additional pass to populate z-buffer with the 
condition codes. It also needs to store any necessary program state in auxiliary 
buffers. 

• Benefit: The shader execution for a particular set of pixels is completely culled 
where desired. 

• Considerations: 
o Takes advantage of the hierarchical z-buffer to cull larger blocks. 
o The z-buffer not available for other computations. 
o Useful for screen-space processing on a subset of the pixels. 

 
Dynamic Flow Control: 

• Cost: The branching instruction. 
• Benefit: Certain code paths are culled; efficiency depends on whether different 

branches are taken for the same set of pixels. 
• Considerations: 

o Single pass over geometry. Early-z could require multiple passes unless 
deferred shading is employed (which might require MRT). 

o Z-buffer is available to store depth. 
 
To better illustrate these distinctions, we next present some examples of situations in 
which computation was culled by either early-z or dynamic flow control. 
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Early-Z: Fluid flow simulation 
 
 Next we will describe an application of explicit early-z culling for fluid flow 
simulation. As we will see this is a clear example where early-z culling is a better option. 
 
 As we have seen in the past few years at SIGGRAPH and other conferences, 
graphics processors are being applied to broader areas of computation, such as simulation.  
Due to their highly parallel nature and increasingly general computational models, GPUs 
are well matched with the demands of fluid simulation.  We have implemented a Navier-
Stokes fluid simulation on the GPU, including the use of early-z as a means of avoiding 
certain unnecessary computations, speeding up our simulations in some cases by a factor 
of three [Sander04]. 
 
 Our technique is based on the observation that, in many applications, flow is often 
concentrated on certain regions of the simulation grid. The early-z optimizations that we 
employ significantly reduce the amount of computation on regions that have little or no 
flow, saving the computational resources for regions with higher flow concentration, or 
for other objects in the rendered scene.  
 

Our optimization is performed during the most expensive step of the simulation: 
the projection step. This step is performed as a series of rendering passes to solve a linear 
system. We use a relaxation method for this step. The higher the number of iterations 
(rendering passes), the more accurate the result is. Instead of performing the same 
number of passes on all cells, we perform more passes on regions where the pressure is 
higher and fewer passes on regions with little or no density. This is accomplished by 
performing an additional inexpensive render pass that sets the z value of each cell in the 
simulation based on the maximum current value of that cell and its neighbors from the 
pressure buffer of the previous iteration of the simulation. Then, we set the depth 
compare state to LEQUAL and linearly increase the z value on each of the projection 
render passes. On the first pass, all cells are processed, and on the subsequent passes, the 
number of cells that are processed gradually decreases. Figure 1b shows the pressure 
buffer which is used to set the z buffer that cull the projection computation. Darker values 
indicate regions of lower pressure, where fewer iterations need to be performed. 
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(a) Pressure buffer for simulation culling 

 

  
(b) Early-Z (c) Brute force 

Figure 1 – Fluid flow Early-Z optimizations and comparison with Brute force 
 

The choice to use early-z culling for this optimization is based on the fact that all 
operations are done in image space, and thus the z-buffer is not being used for depth. 
More importantly, the conditional decision results in either processing or completely 
culling a particular shader instance, as opposed to culling parts of a shader. Early-z 
culling completely prevents the pixel from being executed. 
 

This culling technique is also suitable for fluid flow simulations with blockers. 
Since no computation needs to be performed on most cells that are blocked (e.g., white 
cells in Figure 2a), these methods can further reduce computational costs. Note that 
blocked cells that have neighbors that are not blocked cannot be culled and need to be 
processed in order to yield the proper collision effects. 
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Figure 2 – Fluid flow with blockers 

 
Early-Z and dynamic flow control:  
Multiple shadow maps with selective antialiasing 
 

In this section, we describe a shadow algorithm that uses both early-z and 
dynamic flow control in order to cull computation in different steps of the algorithm. 
Shadow mapping’s popularity as a shadow computation algorithm is due to the fact that it 
is an extremely fast method that maps nicely to graphics hardware. The drawback of 
shadow mapping is that it requires a very high resolution shadow buffer in order to 
properly sample the surface and reduce aliasing. Recently, several techniques have been 
introduced to mitigate the aliasing problem.  
 

We present an approach that creates a series of “camera-chasing” shadow maps 
directly in front of the camera for nearby geometry, as well as a shadow map that 
encapsulates the entire scene geometry for the remaining geometry in the scene.  Figure 3 
shows a cross-section of two successive shadow map frusta along with the spherical 
regions that they encapsulate. For a given radius r for the sphere that is closest to the 
camera, the successive spheres can be computed using basic trigonometry. All shadow 
maps have the same resolution (e.g., 1024x1024), but note that the closer shadow maps 
have the required higher surface sampling rate, due to their tighter frusta.  
 

The use of camera-chasing shadow maps significantly reduces aliasing, as 
evidenced by the higher sampling rate near the camera on Figure 4a. However, the hard 
“staircasing” artifacts are still clearly noticeable. In order to address this problem, we 
attempted several methods, such as bilinear PCF filtering and other fixed sampling 
kernels. We have found good results using the following two sequential steps: 
 

1) Fetching from the shadow map using a disc of multiple sample offsets locally 
rotated by a per-pixel angle specified in an image-space lookup table. 

 
2) Locally blurring the resulting frame buffer at the shadow transition regions. 
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The first step uses dynamic flow control to reduce the number of required texture 
fetches, while the second step uses Early-Z culling to avoid blurring regions of the screen 
that are not shadow transitions. 
 

 
Figure 3 – Camera-chasing shadow maps 

 

 
(a) Single fetch and no blurring (b) Multiple fetch and blurring 

Figure 4 – Results with and without applying the rotated kernel lookup and the 
screen-space blur. 
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Shadow map sampling 
 

In order to reduce aliasing artifacts, a common approach is to perform multiple 
shadow map lookups and apply percentage-closest filtering (PCF)  [Reeves87]. In order 
to further reduce aliasing, we instead use a disc of 12 selected sample offsets and locally 
rotate these offsets using a per-pixel angle specified by an image-space lookup table. 
 

Prior to performing the 12 shadow map lookups, we must determine which 
shadow map we want to use. We always use the closest one to the camera, whose frustum 
encapsulates the pixel (i.e., the one with tightest frustum). If we are using two shadow 
maps, we first project the sample using the tightest one, and if it is within range, we 
perform the 12 lookups using this shadow map, otherwise, we use the other shadow map, 
which encapsulates the entire geometry. Figure 4a shows the use of two shadow maps 
and a clear transition between the two. 
 

Note that since this is a decision of whether to execute one code path or a 
different code path when shading the model, we cannot afford to do any early-z 
optimization, since that would require rendering the entire model multiple times. Thus, 
this is a clear case in which we want to perform the conditional inside the shader itself.  
 

We have found that this approach, while further reducing aliasing artifacts, 
introduces some fine-grained noise. The shadow map blurring step described below 
addresses this noise. 
 
Shadow map blurring 
 

In order to address the fine-grained noise introduced by the above step, we 
perform a screen-space Gaussian blur pass on shadow transition regions by rendering a 
full-screen quadrilateral. Our image-space blurring technique is most similar to the work 
of [Arvo04], but is used to hide aliasing artifacts as opposed to computing penumbral 
opacity. The blur computation is only performed in the regions in which the shadow 
transitions from light to dark.  
 

In order to efficiently blur those selected regions, when we render the geometry 
and perform the shadow map lookups, if the shadow tests differ within a given pixel, we 
store 1 in the alpha channel, otherwise we store 0. After rendering the geometry, in an 
extremely fast rendering pass, we transfer the alpha value to the z-buffer. Then, we 
perform the blur pass by setting the z test equal to 1. This only blurs the samples on 
shadow transitions, and avoids the expensive computation elsewhere.  
 

Note that since the blurring computation is performed in image space, and the 
decision is whether to blur or completely cull the computation in that pixel, using Early-Z 
is far more attractive than using dynamic flow control. This final blurring step used a 5x5 
Gaussian kernel at shadow transition regions and slowed down the algorithm by just 3% 
in our tested scenes. As shown in Figure 4b, this method results in no noticeable aliasing. 
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Dynamic flow control:  
Shadow map space image processing for computation masking 
 

There are other ways in which computation culling can be beneficial for shadow 
mapping. This section explains two methods for edge filtering and propagating the edge 
and depth information to encompass the boundary region that requires more processing.  
The first generates a mipchain for the shadow map edge mask, and simply fetches from a 
lower miplevel to effectively dilate the edge mask.  The second propagates the min and 
max of the depth extent of the shadow map receiver texels to generate subsequent levels 
of a depth extent mipchain.  This approach is particularly beneficial for complex scenes 
with a high depth complexity as it only applies the complex processing within a particular 
depth range per texel, and thus only the shadow map depths where the shadow 
boundaries appear in the final scene. 
 
Conditional Processing for Shadow Mapping 
 

A common artifact with shadow mapping is the resulting aliasing artifacts on the 
shadow map boundaries.  The standard solution to avoid shadow map aliasing is PCF 
filtering, which usually requires taking several samples from the shadow map. While 
using high quality PCF filtering everywhere in the rendered scene provides correct results, 
it is not efficient.  High quality filtering is only required for the regions of the scene 
where the shadow edges lie. 
 

One simple and effective method for doing this is to only perform the high quality 
filtering in regions front facing to the light.  If a projective spotlight texture or other form 
of gobo is used to light the scene, the shadow mapping computation should only be 
performed in the regions that the filtered light projects onto. 
 

Incorporating this results in a huge speedup for the majority of cases, especially 
when the camera is facing the light, and most of the visible surfaces in the scene are 
backfacing with respect the light. 
 
Computation Masking and Edge Dilation using Mipchain Generation 
 

Another observation is that high quality PCF filtering is really only required near 
shadow boundary regions.  In our implementation of PCF for anti-aliasing, the filtering 
kernel has a fixed width in shadow map space, so only regions within a certain distance 
from shadow boundaries in shadow map space need to be processed using the high 
quality PCF kernel.  Regions completely inside or outside the shadow require only a 
single fetch from the  shadow map in order to determine whether they are inside or 
outside the shadow. In order to determine the amount of filtering required per-pixel, we 
will build a computation mask to mask off regions that require higher quality filtering. 
There are a couple of approaches we use to determine these regions.  We will describe 
them next. 
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The first technique involves edge-filtering the shadow map and propagating the 
filtered regions outward.  Figure 5 shows an example of an edge mask generated from a 
shadow mask.  A standard technique for propagating edge information outward is to 
perform some form of dilation operator multiple times on the image.  However, doing 
this is expensive since the operator would have process all the pixels texels in the edge 
texture multiple times.  However, since we are using this edge information for 
computation masking the dilation operation does not have to be exact.  We do not need  
to know exactly which texels are within N texel lengths from an edge.  As long as our 
computation mask encompasses the regions that require higher quality filtering, the 
results will still be correct.   
 

A simpler alternative that is optimized for graphics hardware is to build a 
mipchain from the edge mask.  By going down levels in the resulting mipchain, we have 
a lower resolution representation of the edge mask, where each texel occupies four times 
the area of texels in the previous level.  
 

This effectively approximates the dilation of the shadow mask.  Each time the 
image is filtered to go down a miplevel, the texel is dilated to twice its original size.  So a 
dilation of 8 pixels in size can be achieved by going down log2(8), or three miplevels.  
However, there are a few implementation details that need to be considered.   
 

The first is that the original edge filter for the highest resolution miplevel should 
be first thresholded so that edge pixels have a value of 1 and non-edge pixels have a 
value of zero.   Then, when generating the subsequent miplevels, the filtering will 
average edge and non-edge pixels together, which will result in values between zero and 
one.  To account for this, all non-zero pixels in the filtered edge mask  should  be 
considered to be in the dilated region.  
 

The second consideration is that with standard fast 2x2 box filtering for mipchain 
generation, texel values only take into account texels from subsequent levels that project 
to within its footprint.  For example, suppose we have a 16x16 texture which is 
completely black except for a single bright pixel at location (7, 7). (e.g. as close to the 
center as possible in the upper left quadrant)  When generating the mipchain, intensity 
from the single bright texel is not propagated to the texels to the other 3 quadrants until 
the 1x1 mip level.  Figure 6 visually shows an example of this. 

 
In order to allow for proper propagation of intensity to implement dilation, when 

fetching from the miplevel, bilinear filtering should be used.  Using bilinear filtering 
gives an extra texel width of dilation, with the texel width determined by the miplevel.   
For instance, a single texel from the mipmap three miplevels down is eight texels from 
the top-most miplevel in width.  Filtering for mipchain construction is only performed up 
to the miplevel used as the computation mask.   

 
During the scene rendering pass in the pixel shader the correct level of the 

mipchain is fetched from tex2dLOD function.   If the result of the fetch is non-zero, more 
complex PCF filtering is performed, otherwise standard single sample shadow mapping is 
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used.  Figure 7 shows some examples of the different criteria we have described so far for 
computation culling. 
 

Figure 5 – The desired final image with soft shadows, the shadow map, and the 
edge map used for computation masking 
 

 
Figure 6 – Example of how mipchain generation propagates intensity values.  
As you can see, the single bright pixel does not get propagated to the other 
quadrants until the 1x1 level.   
 

Figure 7 – Three different criteria used for computation masking for shadow 
mapping using PCF. 
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Depth-Extent Propagation for Computation Masking  
 

Although using the dilated shadow map edge mask to limit the number of pixels 
that use high quality PCF filtering, there is still room for improvement.  One issue is that 
the computation masking is based on the position of the projection of the current pixel 
into the computation mask.  Any given texel in the computation mask can be though of as 
cutting a narrow light frustum through the scene within which all texels either perform 
high quality PCF or basic one sample shadow mapping.  In the case where this texel 
frustum intersects many different objects in the scene, the complex shadow mapping  
applied to all pixels rendered within that frustum.  Since this frustum emanates from the 
light source, the shadow boundary should only lie on the first or second object from the 
light source.  In order to try to limit the high quality PCF processing to be performed only 
on the layer where it is required, we replace the dilated edge mask with a min and max 
distance from the light where the shadow can exist.  We call this two channel texture the 
depth extent map. 
 

To generate the depth extent map, the shadow map is edge filtered.  If an edge is 
detected the value on the edge that is closest to the light is determined to be the blocker 
distance.  Within the 3x3 neighborhood of the texel, the min and max of any shadow map 
depth values greater than the blocker value are stored.  These can be considered to be the 
local range of depths for the receiver, (the surface the shadow is cast onto), and are 
written out to the depth extent map.  The receiver depths are used, since the shadows lie 
on the receiving surface rather than the blocking surface.  If an edge is not detected in the 
pixel shader, a degenerate depth range (min = 1.0, and max = 0.0) is written into the 
depth extent map. 
 

In order to propagate the depth extent outward in texture space to generate the 
computation mask, we use a similar mipchain technique as before.  However, in this case, 
lower miplevels will be used to store the overall depth extent of all the depth extent texels 
in a small neighborhood.  Because of this we need to compute the mipchain using our 
own pixel shaders. 
 

Since we are propagating neighborhood min and max values, using  box filtering 
or bilinear will not work correctly.  Our solution is to compute the region min and max of 
the depth extents of a 3x3 neighborhood in the previous mip-level.  The 3x3 
neighborhood is used rather than a 2x2 neighborhood since bilinear filtering can not be 
used to propagate depth extent information.  The 3x3 neighborhood extends one extra 
pixel to the right and downward in order to pull depth extent information from other 
quadrants and subquadrants.  Since we use min and max operations over the 
neighborhood, non-edge pixels (which have degenerate depth extents having a max of 0 
and a min of 1) do not affect the depth extent.  If all texels in the 3x3 neighborhood are 
non-edge, it naturally falls out of the math that the resulting texel in the next level is non-
edge. 
 

Just as in the previous section, the dilation amount should be determined by the 
width of the PCF kernel in shadow map space.  The number of the miplevel chosen in the 
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min-max depth extent mipchain is equal to the log2 of the kernel width.  Neighborhood 
min-max mipchain generation only proceeds until this miplevel. 
 

The depth extent is fetched using the same texture coordinates used to fetch from 
the shadow map.  When rendering the scene pass, the high quality PCF filtering is only 
performed if the current depth value is within the depth extent fetched from the depth 
extent mipchain.  If not, basic single sample shadow mapping is used.   
 

In most cases we have seen an overall performance increase (up to 3x speedup) 
from using these approaches in our test scenes. Generally adding conditionally based 
computation masking to a shader will help the average case at the expense of the worse 
case performance due to the additional overhead of the conditional instructions. 
 

Any performance increases are dependent on the scene and viewing angle.  A 
complex scene consisting mostly of shadow edges may require high quality filtering over 
nearly the entire image, and might not see an overall improvement in performance.  
 
Conclusion 
 

In order to efficiently render a scene, one important consideration is to determine 
how to best take advantage of features of current graphics hardware that provide the 
ability of efficient computation culling. In these notes we outlined the benefits and costs 
of two different optimizations, and we showed examples of applications in which 
computation can be completely avoided for certain pixels via early-z culling, and 
applications in which it is significantly beneficial to avoid specific code paths via 
dynamic flow control.  
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