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Introduction 
 
 With the introduction of the ps_2_0 pixel shader model in DirectX 9.0, we are 
able to significantly expand our ability to use consumer graphics hardware to perform 
image processing operations.  This is due to the longer program length, the ability to 
sample more times from the input image(s) and the addition of floating point internal data 
representation.  In the first ShaderX book, we used the ps_1_4 pixel shader model in 
DirectX 8.1 to perform basic image processing techniques such as simple blurs, edge 
detection, transfer functions and morphological operators [Mitchell02].  In this chapter, 
we will extend our image processing toolbox to include color space conversion, a better 
edge detection filter called the Canny filter, separable Gaussian and median filters, and a 
real-time implementation of the Fast Fourier Transform. 
 
Review 
 
 As shown in our original image processing chapter in the first ShaderX book, 
post-processing of 3D frames is fundamental to producing a variety of interesting effects 
in game scenes.  Image processing is performed on a GPU by using the source image as a 
texture and drawing a screen-aligned quadrilateral into the back buffer or another texture.  
A pixel shader is used to process the input image to produce the desired result in the 
render target. 
 

 
Figure 1 - Using a pixel shader for image processing by rendering from one image to another 
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Image processing is especially powerful when the color of the destination pixel is 
the result of computations done on multiple pixels from the source image.  In this case, 
we sample the source image multiple times and use the pixel shader to combine the data 
from the multiple samples (or taps) to produce a single output. 
 
 
Color Space Conversion 
 
 Before we get into interesting multi-tap filters, we’ll present a pair of shaders 
which can be used to convert between HSV and RGB color spaces.  These shaders 
perform some relatively complex operations to convert between color spaces even though 
they are only single-tap filters. 
 

For those who may not be familiar with HSV space, it is a color space which is 
designed to be intuitive to artists who think of a color’s tint, shade and tone [Smith78].  
Interpolation in this color space can be more aesthetically pleasing than interpolation in 
RGB space.  Additionally, when comparing colors, it may be desirable to do so in HSV 
space.  For example, in RGB space, the color {100, 0, 0} is very different from the color 
{0, 0, 100}.  However, their V components in HSV space are equal.  Colors, represented 
by {hue, saturation, value} triples are defined to lie within a hexagonal pyramid as 
shown in Figure 2 below. 
 

 
Figure 2 – HSV Color Space 
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 The hue of a color is represented by an angle between 0˚ and 360˚ around the 
central axis of the hexagonal cone.  A color’s saturation is the distance from the central 
(achromatic) axis and its value is the distance along the axis.  Both saturation and value 
are defined to be between 0 and 1.   
 

We have translated the pseudocode RGB-to-HSV transformation from [Foley90] 
to the DirectX 9 High Level Shading Language (HLSL) and compiled it for the ps_2_0 
target.  If you are unfamiliar with HLSL, you can refer back to the introductory chapter 
“Introduction to the DirectX® 9 High Level Shading Language.”  As described in 
[Smith79], you can see that the RGB_to_HSV() function in this shader first determines the 
minimum and maximum channels of the input RGB color.  The max channel determines 
the value of the HSV color, or how far along the achromatic central axis of the hexagonal 
cone the HSV color will be.  The saturation is then computed as the difference between 
the max and min RGB channels divided by the max.  Hue (the angle around the central 
achromatic axis) is then a function of which channel had the max magnitude and thus 
determined the value. 
 
 
float4 RGB_to_HSV (float4 color) 
{ 
    float  r, g, b, delta; 
    float  colorMax, colorMin; 
    float  h=0, s=0, v=0; 
    float4 hsv=0; 
     
    r = color[0]; 
    g = color[1]; 
    b = color[2]; 
 
    colorMax = max (r,g); 
    colorMax = max (colorMax,b); 
 
    colorMin = min (r,g); 
    colorMin = min (colorMin,b); 
 
    v = colorMax;               // this is value 
 
    if (colorMax != 0) 
    { 
        s = (colorMax - colorMin) / colorMax; 
    } 
 
    if (s != 0) // if not achromatic 
    { 
        delta = colorMax - colorMin; 
        if (r == colorMax) 
        { 
            h = (g-b)/delta; 
        } 
        else if (g == colorMax) 
        { 
            h = 2.0 + (b-r) / delta; 
        } 
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        else // b is max 
        { 
            h = 4.0 + (r-g)/delta; 
        } 
 
        h *= 60; 
 
        if( h < 0) 
        { 
            h +=360; 
        } 
     
        hsv[0] = h / 360.0;    // moving h to be between 0 and 1. 
        hsv[1] = s; 
        hsv[2] = v; 
    } 
 
    return hsv; 
} 
 

 
The HSV-to-RGB transformation, also translated from [Foley90], is shown below 

in HLSL.  
  
 
float4 HSV_to_RGB (float4 hsv) 
{ 
    float4 color=0; 
    float  f,p,q,t; 
    float  h,s,v; 
    float  r=0,g=0,b=0; 
    float  i; 
 
    if (hsv[1] == 0) 
    { 
        if (hsv[2] != 0) 
        { 
            color = hsv[2]; 
        } 
    } 
    else 
    { 
        h = hsv.x * 360.0; 
        s = hsv.y; 
        v = hsv.z; 
 
        if (h == 360.0) 
        { 
            h=0; 
        } 
 
        h /=60; 
        i = floor (h); 
        f = h-i; 
        p = v * (1.0 - s); 

4 



From ShaderX2 – Shader Programming Tips and Tricks with DirectX 9 

        q = v * (1.0 - (s * f)); 
        t = v * (1.0 - (s * (1.0 -f))); 
 
        if (i == 0) 
        { 
            r = v; 
            g = t; 
            b = p; 
        } 
        else if (i == 1) 
        { 
            r = q;  
            g = v;  
            b = p; 
        } 
        else if (i == 2) 
        { 
            r = p; 
            g = v; 
            b = t; 
        } 
        else if (i == 3) 
        { 
            r = p; 
            g = q; 
            b = v; 
        } 
        else if (i == 4) 
        { 
            r = t; 
            g = p; 
            b = v; 
        } 
        else if (i == 5) 
        { 
            r = v; 
            g = p; 
            b = q; 
        } 
 
        color.r = r; 
        color.g = g; 
        color.b = b; 
    } 
 
    return color; 
} 
 

 
 
Other Color Spaces 
 

It is worth noting that RGB and HSV are not the only color spaces of interest in 
computer graphics.  For example, the original paper [Smith78] which introduced HSV 
also introduced a color space called HSL (for hue, saturation and lightness) where L is 
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often the same as the Luminance (Y) channel used in the YIQ color space.  If you are 
interested in learning more about color spaces, [Smith78] and [Foley90] both provide 
excellent discussions. 
 
 Now that we have introduced some reasonably advanced single-tap image 
operations for converting between color spaces, we will discuss a few multi-tap filters 
which perform some sophisticated image processing operations. 
 
 
Advanced Edge Detection 
 

In the first ShaderX book, we discussed the Roberts and Sobel edge detection 
filters [Mitchell02].  Here, we will expand upon those filters and introduce an 
implementation of the Canny edge detection filter. 
 
Step-by-Step Approach 

  As outlined in [Jain95], the Canny edge detection filter can be implemented by 
performing the following operations: 

 
1) Apply a Gaussian blur 
2) Compute the partial derivatives at each texel 
3) Compute the Magnitude and direction of the line (tan-1 ) at each point 
4) Sample the neighbors in the direction of the line and perform 

nonmaxima-suppression. 
 

Naturally, we will implement this in a series of steps, each using a different 
shader to operate on the output from the preceding step.  A Gaussian blur is the first 
shader run over the input image.  This is done to eliminate any high frequency noise in 
the input image.  Various filter kernel sizes can be used for this step. 
 

The next step in the process is computation of the partial derivatives (P and Q) in 
the u and v directions respectively: 
 

 
 

Then the magnitude of the derivative is computed using the standard formula: 
 

22 QPMagnitude +=  
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Finally, the P and Q values are used to determine the direction of the edge at that 
texel using the standard equation: 
 

θ = atan2(Q, P) 
 

Magnitude and θ are written out to an image so that the next shader can use them 
to complete the Canny filter operation.  The edge direction, θ, is a signed quantity in the 
range of -π to π and must be packed into the 0 to 1 range in order to prevent loss of data 
between rendering passes.  In order to do this, we will pack it by computing: 
 

A = abs(θ) / π 
 
 You’ve probably noticed that, due to the absolute value, this function is not 
invertible, hence data is effectively lost.  This does not present a problem for this 
particular application due to symmetries in the following step. 
 

The final pass involves sampling the image to get the Magnitude and the edge 
direction, θ, at the current location.  The edge direction, θ, must now be unpacked into its 
proper range.  Figure 3 below shows a partitioning of all values of θ (in degrees) into four 
sectors. 

 
Figure 3 - The 360 degrees of an angle partitioned into four sectors 

 
The sectors are symmetric and map to the possible ways a line can pass through a 

3×3 set of pixels.  In the previous step, we took the absolute value of θ and divided it by π 
to put it in the 0 to 1 range.  Since we know that θ is already between 0 and 1 from the 
previous step, we are almost done.  Since the partitioning is symmetric, it was an 
excellent way to reduce the number of comparisons needed to find the correct neighbors 
to sample.  Normally, to complete the mapping we would multiply A by 4 and we would 
be done.   However, if you look closely at Figure 3 you will that the sectors are centered 
around 0 and 180.  In order to compensate for this, the proper equation is: 
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Sector = floor(( A – π/16) * 4) 

 
Next, we compute the neighboring texel coordinates by checking which sector 

this edge goes through.  Now that the neighbors have been sampled, we compare the 
current texel’s magnitude to the magnitudes of its neighbors.  If its magnitude is greater 
than both of its neighbors, then it is the local maximum and the value is kept.  If its 
magnitude is less than either of its neighbors, then this texel’s value is set to zero.  This 
process is known as nonmaxima suppression, and its goal is to thin the areas of change so 
that only the greatest local changes are retained. As a final step, we can threshold the 
image in order to reduce the number false edges that might be picked up by this process.  
The threshold is often set by the user when he or she finds the right balance between true 
and false edges. 

 
 

 
Figure 4 - One-Pixel-Wide Edges from Canny Filter 
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Figure 5 - Gradient Magnitudes from Sobel Filter (see [Mitchell02]) 

 
As you can see in Figure 4, the Canny filter produces one pixel wide edges unlike 

more basic filters such as a Sobel edge filter. 
 
Implementation Details 
 
 This shader is implemented in the VideoShader application on the CD using 
HLSL and can be compiled for the ps_2_0 target or higher.  In this implementation, the 
samples are taken from the eight neighbors adjacent to the center of the filter.  Looking at 
the HLSL code, you’ll see an array of float two-tuples called sampleOffsets[].  This 
array defines a set of 2D offsets from the center tap which are used to determine the 
locations from which to sample the input image.  The locations of these samples relative 
to the center tap are shown in Figure 6. 
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Figure 6 – Locations of taps as defined in sampleOffsets[] 

 
 The four steps of the Canny edge detection filter described above have been 
collapsed into two rendering passes, requiring the two shaders shown below.  The first 
shader computes the gradients P and Q followed by the Magnitude and direction (θ).  
After packing θ into the 0 to 1 range, Magnitude and θ are written out to a temporary 
surface. 
 
 
sampler InputImage; 
float2 sampleOffsets[8] : register (c10); 

 
struct PS_INPUT 
{ 
    float2 texCoord:TEXCOORD0; 
}; 
 
float4 main( PS_INPUT In ) : COLOR 
{ 
    int i =0; 
    float4 result; 
    float  Magnitude, Theta; 
    float  p=0,q=0; 
    float  pKernel[4] = {-1, 1, -1, 1}; 
    float  qKernel[4] = {-1, -1, 1, 1}; 
    float2 texCoords[4]; 
    float3 texSamples[4]; 
    float  PI = 3.1415926535897932384626433832795; 
     
     
    texCoords[0] = In.texCoord + sampleOffsets[1];     
    texCoords[1] = In.texCoord + sampleOffsets[2];     
    texCoords[2] = In.texCoord;     
    texCoords[3] = In.texCoord + sampleOffsets[4];     
 
 
    for(i=0; i <4; i++) 
    { 
        texSamples[i].xyz =  tex2D( InputImage, texCoords[i]);  
        texSamples[i] = dot(texSamples[i], 0.33333333f); 
        p += texSamples[i] * pKernel[i]; 
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        q += texSamples[i] * qKernel[i]; 
    } 
 
  p /  = 2.0; 

    q /= 2.0; 
 
  Magnitude =   sqrt((p*p) + (q*q)); 

    result = Magnitude; 
 
  // Now we compute the   direction of the 

    // line to prep for Nonmaxima supression. 
    // 

Nonmaxima supression - If this texel isn    // ’t the Max, 
    // make it 0 (hence, supress it) 

-pi to pi     Theta = atan2(q,p); // result is 
 
  result.a = (abs(Theta) / PI); // Now result   is 0 to 1 

                                  // Just so it can be written out. 
    return result;     
} 
 

 
 

In the second pass of the Canny edge detector, Magnitude and θ are read back 
om th  

d 
 

 
fr e temporary surface.  The edge direction, θ, is classified into one of four sectors
and the neighbors along the proper direction are sampled using dependent reads.  The 
Magnitudes of these neighbor samples along with a user-defined threshold are then use
to determine whether this pixel is a local maximum or not, resulting in either 0 or 1 being
output as the final result. 
 
 
 
sampler InputImage; 
 
oat2 sampleOffsets[fl 8] : register (c10); 

float4 UserInput        : register (c24); 
 

struct PS_INPUT 
{ 
  float2 texCoo  rd:TEXCOORD0; 

}; 
 
oafl t4 main( PS_INPUT In ) : COLOR 

{ 
  int i =0;   

    float4 result; 
    float  Magnitude, Theta; 
    float2 texCoords[4]; 

     float4 texSamples[3];
    float  PI = 3.1415926535897932384626433832795; 
     
 
  //   Tap the current texel and figure out line direction 

    texSamples[0] = tex2D( InputImage, In.texCoord);  
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    Magnitude = texSamples[0].r; 
 
    // Sample two neighbors that lie in the direction of the line 
    // Then find out if ___this___ texel has a greater Magnitude. 
    Theta = texSamples[0].a; 
 
 
    // Must unpack theta. Prior pass made Theta range between 0 and 1 
    // But we really want it to be either 0,1,2, or 4. See [Jain95] 
    // for more details. 

6) * 4 ; // Now theta is between 0 and 4     Theta = (Theta - PI/1
    Theta = floor(Theta); // Now theta is an INT. 
 
  if( Theta == 0)   

    { 
  texCoords[1]       = In.texCoord + sampleOffsets[4];     

        texCoords[2] = In.texCoord + sampleOffsets[3];     
    } 

se if(Theta == 1)     el
    { 

  texCoords[1] = In      .texCoord + sampleOffsets[2];     
        texCoords[2] = In.texCoord + sampleOffsets[5];     
    } 

se if(Theta == 2)     el
    { 

  texCoords[1] = In      .texCoord + sampleOffsets[1];     
        texCoords[2] = In.texCoord + sampleOffsets[6];     
    } 

se //if(Theta == 3)     el
    { 

  texCoords[1] = In.t      exCoord + sampleOffsets[0];     
        texCoords[2] = In.texCoord + sampleOffsets[7];     
    } 
 
  //   Take other two samples 

    // Remember they are in the direction of the edge 
    for(i=1; i <3; i++) 
    { 

  texSamples[i].xyz       =  tex2D( InputImage, texCoords[i]);  
    } 
 
  //   Now it’s time for Nonmaxima supression. 

    // Nonmaxima supression - If this texel isnt the Max, 
    // make it 0 (hence, supress it) 

thin.     // This keeps the edges nice and 
    result = Magnitude; 

amples[1].x || Magni    if( Magnitude < texS tude < texSamples[2].x ) 
    { 

  result =0;       
    } 
   

 //    Threshold the result. 
    if(result.x < UserInput.z) 
    { 

  result =0;       
    }    
    else  
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    { 
        result = 1; 
    } 
 

turn result;       re   
} 
 

 
 
 You can see in Figure 4 that this produces one-pixel-wide edges, which may be 

ore desirable for some applications.  You may see some gaps in the detected edges and, 
 som

eparable Techniques 
 inherent symmetry which allows us to implement 

em more efficiently in a separable manner.  That is, we can perform these 2D image 
process

ith 

and 

 
y-used separable filter is the Gaussian filter, which can be used 

to perform blurring of 2D images.  The 2D isotropic (i.e. circularly symmetric) Gaussian 
filter, g

m
in e cases, it may be useful to apply a dilation operation to fill in these gaps 
[Mitchell02]. 
 
 
S
 

Certain filtering operations have
th

ing operations with a sequence of 1D operations and obtain equivalent results 
with less computation.  Conversely, we can implement a large separable filter kernel w
the same amount of computation as a small non-separable filter.  This is particularly 
important when attempting to apply “blooms” to final frames in high dynamic range 
space to simulate light scattering.  In this final section of the chapter, we will discuss 
three separable filtering operations: the Gaussian blur, a median filter approximation 
the Fast Fourier Transform. 
 
Separable Gaussian 

A very commonl

2D(x, y), samples a circular neighborhood of pixels from the input image and 
computes their weighted average, according to the following equation: 

 
22 yx +

22
22 2

),( σ

σπD eyxg =

ion of the Gaussian and x and 

1 −

 

 
 where σ is the standard deviat y are the coordinates 

f image samples relative to the center of the filter.  The standard deviation, σ, 

e will sample a local area of texels from the input image 
nd weight them according to the above equation.  For example, for a Gaussian with σ = 

1, we compute the following filter kernel (after normalization). 
 

o
determines the size of the filter. 
 

What this means is that w
a
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e Gaussian has infinite extent, but the contribution 
ls outside of this 5×5 region. 

 
 In theory, th to the final result 
is insignificant for input texe
 

An extremely important property of the Gaussian is that it is separable.  That is, it 
can be rearranged in the following manner:  
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 This means that we can implem ian with a series of 1D filtering 
operations: one horizontal (g1 )).  This allows us to implement 

aussians with much larger kernels (larger σ) while performing the same amount of 
alculations that would be required to implement a smaller non-separable filter kernel.  

 
ent a given Gauss

)) and one vertical (g1D(D(x y
G
c
This technique was used in our real-time implementation of Paul Debevec’s Rendering 
with Natural Light animation as seen in Figure 7. 
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Figure 7 - Frame from Real-Time Rendering with Natural Light 

 
After rendering the scene in high dynamic range space, Debevec performed a 

number of large Gaussian blurs on his 2D rendered scene to obtain blooms on bright 
areas of the scene.  In order to do this in real-time, we exploited the Gaussian’s 
separability to perform the operation efficiently.  In our case, we used σ = 7, which 
resulted in a 25×25 Gaussian. 
 

Due to the fact that we have only eight texture coordinate interpolators in the 
ps_2_0 pixel shader programming model, we must derive some of our texture coordinates 
in the pixel shader as deltas from the center tap location.  To make the most efficient use 
of the hardware, we will perform as many reads from the input image as possible using 
non-dependent texture reads. 
 

In our implementation, we divided our samples into three types: inner taps, outer 
taps and the center tap.  The center tap (c) and inner taps (x) shown in Figure 8 below are 
performed using interpolated texture coordinates (and hence non-dependent texture 
reads). 
 

 

 
Figure 8 - Layout of 13 taps of Separable Gaussian 
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 The outer taps (o) shown in Figure 8 are sampled using texture coordinates 
computed in the pixel shader.  That is, they are done with dependent reads.  Note that the 
center tap (c) uses pick-nearest filtering and is aligned with the center of a specific texel 
in the input image.  The other 12 taps all use bilinear filtering and are aligned so that they 
sample from two different texels in the input image.  This Gaussian filter is implemented 
in HLSL in the following shader: 
 
 
float4 hlsl_gaussian (float2 tapZero    : TEXCOORD0, 
                      float2 tap12      : TEXCOORD1, 
                      float2 tapMinus12 : TEXCOORD2, 
                      float2 tap34      : TEXCOORD3, 
                      float2 tapMinus34 : TEXCOORD4, 
                      float2 tap56      : TEXCOORD5, 
                      float2 tapMinus56 : TEXCOORD6 ) : COLOR 
{  
   float4 accum, Color[NUM_INNER_TAPS]; 
   Color[0] = tex2D(nearestImageSampler, tapZero);    // sample 0 
   Color[1] = tex2D(linearImageSampler,  tap12);      // samples  1,  2 
   Color[2] = tex2D(linearImageSampler,  tapMinus12); // samples -1, -2 
   Color[3] = tex2D(linearImageSampler,  tap34);      // samples  3,  4 
   Color[4] = tex2D(linearImageSampler,  tapMinus34); // samples -3, -4 
   Color[5] = tex2D(linearImageSampler,  tap56);      // samples  5,  6 
   Color[6] = tex2D(linearImageSampler,  tapMinus56); // samples -5, -6 
 
   accum  = Color[0] * gTexelWeight[0]; // Weighted sum of samples 
   accum += Color[1] * gTexelWeight[1]; 
   accum += Color[2] * gTexelWeight[1]; 
   accum += Color[3] * gTexelWeight[2]; 
   accum += Color[4] * gTexelWeight[2]; 
   accum += Color[5] * gTexelWeight[3]; 
   accum += Color[6] * gTexelWeight[3]; 
 
   float2 outerTaps[NUM_OUTER_TAPS]; 
   outerTaps[0] = tapZero *  gTexelOffset[0]; // coord for samp  7,   8 
   outerTaps[1] = tapZero * -gTexelOffset[0]; // coord for samp -7,  -8 
   outerTaps[2] = tapZero *  gTexelOffset[1]; // coord for samp  9,  10 
   outerTaps[3] = tapZero * -gTexelOffset[1]; // coord for samp -9, -10 
   outerTaps[4] = tapZero *  gTexelOffset[2]; // coord for samp  11, 12 
   outerTaps[5] = tapZero * -gTexelOffset[2]; // coord for samp -11,-12 
 
   // Sample the outer taps 
   for (int i=0; i<NUM_OUTER_TAPS; i++) { 
      Color[i] = tex2D (linearImageSampler,  outerTaps[i]);  
   } 
 
   accum += Color[0] * gTexelWeight[4]; // Accumulate outer taps 
   accum += Color[1] * gTexelWeight[4]; 
   accum += Color[2] * gTexelWeight[5]; 
   accum += Color[3] * gTexelWeight[5]; 
   accum += Color[4] * gTexelWeight[6]; 
   accum += Color[5] * gTexelWeight[6]; 
 
   return accum; 
} 
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 Applying this shader twice in succession (with different input texture coordinates 
and gTexelOffset[] table), we compute a 25×25 Gaussian blur and achieve the bloom 
effect we are looking for. 
 
 
Separable Median Filter Approximation 
 

Another important filter in image processing is the median filter, the output of 
which is the median of the set of input data sampled by the filter kernel.  For those who 
may not recall, the median of a set of values is the middle value after sorting or ranking 
the data.  For example, if you have the following set of numbers {9, 3, 6, 1, 2, 2, 8}, you 
can sort them to get {1, 2, 2, 3, 6, 8, 9} and select the middle value 3.  Hence, the median 
of these values is 3.  In image processing, a median filter is commonly used to remove 
“salt and pepper noise” from images prior to performing other image processing 
operations.  It is good for this kind of operation because it is not unduly influenced by 
outliers in the input data (i.e. the noise) the way that a mean would be.  Additionally, the 
output of a median filter is guaranteed to be a value which actually appears in the input 
image data; a mean does not have this property. 
 

As it turns out, an approximation to a 2D median filter can be implemented 
efficiently in a separable manner [Gennert03].  Say we have sampled a 3×3 region of our 
input image and the data are ranked in the following order: 

 
 

 
 

 
We can first take the median of the rows of the ranked data: 
 

 
 
We can then take the median of these medians to get an approximation to the 

median of the whole 3×3 region: 
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From this, we obtain the data in the 5th ranked image sample, which is the correct 

value.  We say that this method is only an approximation to a true median filter because 
the true median will not be found if the ranked data is not so evenly distributed within the 
filter kernel.  For example, if we have the following ranked data, we can get an incorrect 
median: 
 

 
 

For a 3×3 filter kernel, however, the worst case that this separable median filter 
implementation will give you is the 4th or the 6th rank instead of the 5th, which may be 
adequate for many applications. 
 

We have implemented this separable approximation to a median filter with a two-
pass rendering approach.  The first pass finds the median of each 3×1 region of the image 
and outputs it to an intermediate buffer.  The second pass performs the same operation on 
each 1×3 region of the intermediate buffer.  The end result is equivalent to the separable 
median algorithm outlined above. 
 
Median Filter HLSL Implementation 
 

In our HLSL implementation of the separable median approximation, both passes 
will use the FindMedian() function, which takes three scalar inputs: 
 
 
float FindMedian(float a, float b, float c) 
{ 
    float median; 
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    if( a < b ) 
    { 
        if( b < c)  
        { 
            median = b; 
        } 
        else 
        { 
            median = max(a,c); 
        } 
    } 
    else 
    { 
        if( a < c) 
        { 
            median = a; 
        } 
        else 
        { 
            median = max(b,c); 
        } 
 
    } 
 
    return median; 
} 
 

 
 

  The first pass of the 3×3 median filter, shown below, takes three samples from 
the input image: the texel at the current location and the left and right neighbors.  The 
median red, green and blue values are found independently and the result is written out to 
a temporary surface. 
 
 
sampler InputImage; 
float2 sampleOffsets[8]; 

 
struct PS_INPUT 
{ 
    float2 texCoord:TEXCOORD0; 
}; 
 
float4 main( PS_INPUT In ) : COLOR 
{ 
    int i =0; 
    float4 result; 
    float2 texCoords[3]; 
    float3 texSamples[3]; 
     
    texCoords[0] = In.texCoord + sampleOffsets[3];     
    texCoords[1] = In.texCoord; 
    texCoords[2] = In.texCoord + sampleOffsets[4];     
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    // the left and right neighbors of this texel 
    for(i=0; i <3; i++) 
    { 

  texSamples[i].xyz       =  tex2D( InputImage, texCoords[i]);  
    } 
 
  res  ult.r = FindMedian(texSamples[0].r,texSamples[1].r, 

                          texSamples[2].r); 
xSamples[1].g,     result.g = FindMedian(texSamples[0].g,te

                          texSamples[2].g); 
xSamples[1].b,     result.b = FindMedian(texSamples[0].b,te

                          texSamples[2].b); 
    result.a = 0; 
     

eturn result;     r     
} 
 

 
In the second pass of the 3×3 median filter, the texel at the current location and 

the top and bottom neighbors are sampled.  The median red, green and blue values are 
found independently and the final result of the shader is computed. 
 
 
sampler InputImage; 
float2 sampleOffsets[8]; 
  
struct PS_INPUT 
{ 
  float2 texCoo  rd:TEXCOORD0; 

}; 
 
oafl t4 main( PS_INPUT In ) : COLOR 

{ 
  int i =0;   

    float4 result; 
    float2 texCoords[3]; 
    float3 texSamples[3]; 
 
  texCoords[0] = In.texCo  ord + sampleOffsets[1];     

    texCoords[1] = In.texCoord; 
 sampleOffsets[6];         texCoords[2] = In.texCoord +

 
  // the top and bottom neighbors of this texel   

    for(i=0; i <3; i++) 
    { 

  texSamples[i].xyz       =  tex2D( InputImage, texCoords[i]);  
    } 
 
  res  ult.r = FindMedian(texSamples[0].r,texSamples[1].r, 

                          texSamples[2].r); 
xSamples[1].g,     result.g = FindMedian(texSamples[0].g,te

                          texSamples[2].g); 
xSamples[1].b,     result.b = FindMedian(texSamples[0].b,te

                          texSamples[2].b); 
    result.a = 0; 

20 



From ShaderX2 – Shader Programming Tips and Tricks with DirectX 9 

     
    return result;     
} 
 

 
 
Median Filter Results 

To test the ability of this median filter approximation to remove salt-and-pepper 
noise, w

 

e have added noise to a test image and run the median filter over it twice to 
obtain the results shown in Figure 9. 
  

 
(a) Original (b) One Median Pass 

Figu ults 

 
The original image (9a) has had some noise added to it.  With only one pass of the 

edian

to 

ourier Transform 

(c) Two Median Passes 

re 9 – Median Filter Res

 
m  filter, much of the noise is removed (9b).  Applying the median filter a second 
time eliminates the noise almost completely (9c).  Median-filtering the red, green and 
blue channels of the image independently is a reasonably arbitrary decision that seems 
work well for our data.  You may find that another approach, such as converting to 
luminance and then determining the median luminance works better for your data. 
 
F
 
 A very powerful concept in image processing is transformation of spatial domain 

ages
 

d 
r 

t 

e 

im  into the frequency domain via the Fourier Transform.  All of the images that we 
have discussed so far have existed in the spatial domain.  Using the Fourier transform, we
can transform them to the frequency domain, where the images are represented not by a 
2D array of real-valued brightness values distributed spatially, but by a 2D array of 
complex coefficients which are used to weight a set of sine waves which, when adde
together, would result in the source image.  This set of sine waves is known as a Fourie
series, named for its originator, Jean Baptiste Joseph Fourier.  Fourier’s assertion was tha
any periodic signal can be represented as the sum of a series of sine waves. This applies 
to any sort of signal, including images.  The conversion from the spatial domain to the 
frequency domain is performed by a Fourier transform.  In the case of digital images 
consisting of discrete samples (pixels), we use a discrete Fourier transform (DFT).  Th
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equations for performing a DFT and its inverse on a two-dimensional image are shown 
below: 

Fourier Transform 
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where h(x, y) is the value of the pixel located at location (x, y), H(u, v) is the 

valu

 
For these equations, it is important to remember that these are complex numbers (i 

is the s

)sin()cos( xixeix +=   and )sin()cos( xixe ix −=−  
 

PU Implementation 

1 1M N

e of the image in frequency space at location (u, v), M is the width of the 
image in pixels, and N is the height of the image in pixels. 

quare root of negative one).  Additionally, from complex math: 
 

G
 
 A naïve implementation of these operations would be an extremely expensive 

ass 

 

oating 

The FFT uses two primary optimizations to minimize its computational 
omple

nal 
e 

.  

The first thing to note when using a GPU to implement an FFT based on the 
decima , the 

processing step, O(n4) in big O notation. Fortunately, much research has gone into a cl
of algorithms known as Fast Fourier Transforms (FFT’s). These algorithms refactor the 
transform equations above to reduce the complexity to O(n * log n).  The initial algorithm
described to accomplish this is referred to as “Decimation in Time” and was published in 
1965 by Cooley and Tukey [Cooley65].  As it turns out, the Decimation in Time 
algorithm translates very naturally to multipass rendering on graphics HW with fl
point pixel processing pipelines. 
  
 
c xity. The first optimization the FFT makes is to exploit the transform’s 
separability and break the two-dimensional transform into several one-dimensio
transforms.  This is done by performing a one-dimensional FFT across the rows of th
image followed by a one-dimensional FFT along the columns of the resulting image.  
This greatly reduces the growth in complexity of the operation as the image size grows
The next optimization uses the fact that a Fourier transform of size N can be rewritten as 
the sum of two Fourier transforms of size N/2, eliminating redundant computations.  This 
portion of the optimization reduces the cost of the one-dimensional transforms from 
O(n2) to O(n * log n). 
 

tion in time algorithm is that, to maintain most of its efficiency improvements
algorithm must be implemented in multiple passes by rendering to floating point 
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temporary buffers.  If the spatial domain image is color (i.e. has multiple channels
temporary buffers will need to be set up as multiple render targets since the frequency 
domain representation of the image uses complex numbers thus doubling the number o
channels on the output. 
 

) these 

f 

For a width × height image, the “Decimation in Time” FFT algorithm takes log2 
(width)

olely 

n-in-

1. Horizontal scramble using scramble map to do dependent texture reads 

2.  passes 
ble map again 

 
We will now describe each of these steps in detail. 

 
cramble 

The Decimation in Time algorithm starts with a phase referred to as a scramble. 

                   data[i] :=: data[rev(i)] 

where rev(i) is the bit reverse of i. 
 

In other words, the data member at location i is swapped with the data member at 
the loca

 

 + log2(height) + 2 rendering passes to complete.  For example, a 512×512 image 
takes 20 rendering passes, which renders at approximately 30 frames per second on 
today’s fastest graphics processors.  Because each step of the computation is based s
on the previous step, we are able to conserve memory and ping-pong between two 
floating-point renderable textures to implement the following steps of the decimatio
time algorithm: 
 

from original image 
log2 (width) butterfly

3. Vertical scramble using scram
4. log2 (height) butterfly passes 

S
 
 
This phase reorders the data such that: 
 
  
 

tion at the bit-reversed address of i.  The bit reverse of a given value is its mirror 
image written out in binary.  For example, the bit reverse of 0111 is 1110.  Figure 10 
shows an example of a scramble of a 16-element image. 
 

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111  
Figure 10 - Simple scramble of 16×1 image 
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Values connected by arrows in Figure 10 are swapped during the scramble step.  
Obviously, symmetric values such as 0000, 0110, 1001 and 1111 are left in place.  Since 
pixel shaders can’t easily do such bit-twiddling of pixel addresses, the most effective way 
to perform the scramble step is via a dependent read from the input image, using a 
specially-authored scramble map stored in another texture to provide the bit-twiddled 
address from which to do the dependent read. The shader to perform such a dependent 
read for the horizontal scramble is shown below: 
 

 
sampler  scramble    : register(s0); 
sampler  sourceImage : register(s1); 
 
struct PS_INPUT 
{ 
    float1 scrambleLoc:TEXCOORD0; 
    float2 imagePos:TEXCOORD1; 
}; 
 
float4 main( PS_INPUT In ) : COLOR 
{ 
    float2 fromPos; 
 
    fromPos = In.imagePos; 
 
    // scramble the x coordinate 
    // fromPos.x gets assigned red channel of texture 
    fromPos.x = tex1D(scramble, In.scrambleLoc); 
 
    return tex2D(sourceImage, fromPos); 
} 
 

 
It is important to remember that the scramble map must contain enough bits to 

uniquely address each texel in the source image. Typically, this means the texture should 
be a sixteen-bit single channel texture, preferably an integer format such as D3DFMT_L16. 
 
Butterflies 
 
 Once the image has been scrambled, a series of butterfly operations are applied to 
the image.  In each butterfly pass, a pair of pixels is combined via a complex multiply 
and add.  Due to the inability of graphics processors to write to random locations in 
memory, this operation must be done redundantly on both of the pixels in the pair and 
therefore lose some of the ideal FFT efficiency gains.  The locations of the paired pixels 
are encoded in a butterfly map.  The butterfly map is as wide as the source image and has 
one row for each butterfly step.  The code for applying horizontal butterflies is shown 
below. 
 

 
//all textures sampled nearest 
sampler  butterfly   : register(s0); 
sampler  sourceImage : register(s1); 
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struct PS_INPUT 
{ 
    float2 srcLocation:TEXCOORD0; 
}; 
 
//constant to tell which pass is being used 
float pass;  // pass = passNumber / log2(width)  
 
float4 main( PS_INPUT In ) : COLOR 
{ 
    float2 sampleCoord; 
    float4 butterflyVal; 
    float2 a; 
    float2 b; 
    float2 w; 
    float temp; 
 
    sampleCoord.x = srcLocation.x; 
    sampleCoord.y = pass; 
 
    butterflyVal = tex2D( butterfly, sampleCoord); 
    w = butterflyVal.ba; 
 
    //sample location A 
    sampleCoord.x = butterflyVal.y; 
    sampleCoord.y = srcLocation.y; 
    a = tex2D( sourceImage, sampleCoord).ra; 
 
    //sample location B 
    sampleCoord.x = abs(butterflyVal.x); 
    sampleCoord.y = srcLocation.y; 
    b = tex2D( sourceImage, sampleCoord).ra; 
 
    //multiply w*b (complex numbers)  
    temp = w.x*b.x - w.y*b.y; 
    b.y = w.y*b.x + w.x*b.y; 
    b.x = temp; 
 
    //perform a + w*b or a - w*b 
    a = a + ((butterflyVal.x < 0.0) ? -b : b); 
 
    //make it a 4 component output for good measure 
    return a.xxxy; 
} 

 
 The shader performs an extremely simple operation to accomplish its goal. First, 
it fetches a texture to determine where on this line of the image to get two parameters a 
and b.  This same texel contains a factor w that is combined with a and b to produce the 
final result.  From these parameters, the algorithm can actually produce two of the results 
needed for the next pass (a’ and b’), but since GPU’s do not perform random writes to 
memory, the texture also includes a flag for which value to leave at this location. The 
following equation shows the math used to convert a and b to a’ and b’. 
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Equation 1: Butterfly operation 

wbab
wbaa

−=′
+=′  

  
 The shader only concerns itself with a single channel image and expects that the 
real component is fetched into the first component and the imaginary component is 
fetched into the fourth component. To handle more components, the shader does not need 
to change significantly, but it will need to use separate textures and multiple render 
targets to handle more than two channels simultaneously. The largest amount of magic is 
in the special butterfly texture. This texture contains the offsets of the a and b parameters 
to the function in its first two components and the real and imaginary parts of the w 
parameter in its last two components. Additionally, the second texture coordinate is given 
a sign to encode whether this execution of the shader should produce a’ or b’. To ensure 
an accurate representation of all this with the ability to address a large texture, a thirty-
two bit per component floating point texture is the safest choice. 
 
 After the scramble and butterfly passes are applied in the horizontal direction, the 
same operations are applied to the columns of the image to get the vertical FFT.  The 
overall algorithm looks something like the following pseudo code: 
 

// Horizontal scramble first 
SetSurfaceAsTexture( surfaceA); //input image 
SetRenderTarget( surfaceB); 
LoadShader( HorizontalScramble); 
SetTexture( ButterflyTexture[log2(width)]); 
DrawQuad(); 
 
// Horizontal butterflies 
LoadShader( HorizontalButterfly); 
SetTexture( ButterflyTexture[log2(width)]); 
for ( i = 0; i < log2( width); i++) 
{ 
   SwapSurfacesAandB(); 
   SetShaderConstant( “pass”, i/log2(width)); 
   DrawQuad(); 
} 
 
// Vertical scramble 
SwapSurfacesAandB(); 
LoadShader( VerticalScramble); 
SetTexture( ButterflyTexture[log2(height)]); 
DrawQuad(); 
 
// Vertical butterflies 
LoadShader( VerticalButterfly); 
SetTexture( ButterflyTexture[log2(height)]); 
for ( i = 0; i < log2( height); i++) 
{ 
   SwapSurfacesAandB(); 
   SetShaderConstant( “pass”, i/log2(height)); 
   DrawQuad(); 
} 
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 To transform back to the spatial domain, the exact same operations are performed 
on the data, except that, as one final step, the data has a scaling factor applied to bring it 
into the correct range. 
 
Results 
 
 So, now that we know how to apply an FFT to an image using the graphics 
processor, what have we computed?  What does this frequency domain representation 
look like and what does it mean? 
 

The output of the Fourier transform consists not only of complex numbers, but 
also typically spans a dynamic range far greater than that which can be displayed directly 
in print or on a monitor.  As a result, the log of the magnitude of the frequency is 
typically used when displaying the Fourier domain. The function used to visualize the 
Fourier domain in this chapter is given below: 
 

)..1log(*1.0)( 22 ixrexxf ++=  
 
 Finally, the image is also shifted into what is referred to as normal form. This is 
done primarily as a way to simplify the interpretation of the data. The shift can be done 
on graphics hardware by setting the texture wrap mode to repeat and biasing the texture 
coordinates by (-0.5, -0.5). In this format, the lowest frequencies are all concentrated in 
the center of the frequency-domain image and the frequencies are progressively higher 
closer to the edges of the image. 
 
 

 
Figure 11 - Original Image 
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Figure 12 - Fourier Transform (raw) 

 

 
Figure 13 - Fourier Transform in normal form 

 
Utilizing the FFT 
 
 Besides just providing an interesting way to look at and analyze images, the 
frequency space representation allows certain operations to be performed more efficiently 
than they could be in the spatial domain. 
 
 First, removing high frequencies that contribute to aliasing can be most easily 
performed in frequency space.  The simplest implementation of this simply crops the 
image in frequency space to remove the higher frequencies.  This is the application of 
what is called the ideal filter, but its results tend to be anything but ideal on an image of 
finite size. The ideal filter really has an infinite width in the spatial domain, so when the 
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cropped image is transformed back to the spatial domain, sharp edges will ring with 
ghosts propagating in the image.  Other filters have been designed to work around such 
issues.  One well known filter for this sort of purpose is the Butterworth filter. 
 
 Additionally, frequency space can be used to apply extremely large convolutions 
to an image. Convolutions in image space are equivalent to multiplication in the 
frequency domain, so instead of having a multiply and add for each element of a 
convolution mask at each pixel as would be required in the spatial domain, the operation 
takes only a multiply per pixel in the frequency domain.  This is most useful on large 
non-separable filters like the Laplacian of Gaussians (LoG) which produces a second 
order derivative that can be used to find contours in images.  In Figure 14, a LoG filter 
has been applied to the reference image used throughout the section.  To apply the filter 
in the frequency domain, the image and the filter must both be first transformed into the 
frequency domain with the Fourier transform.  The filter also must be centered and 
padded with zeros such that it is the same size as the image to which it is being applied. 
Once in the frequency domain, the filter and image—both of which contain complex 
numbers—must undergo a complex multiplication.  The result is next run through the 
inverse Fourier transform.  Finally, the image must be translated similar to the way in 
which the frequency space images are translated to get the correct image.  This last step 
appears to be often unmentioned in discussions of this operation, but failure to do it can 
lead to a fruitless bug hunt. 
 

 
Figure 14 - 17×17 Lapacian of Gaussian Operation 

 
Conclusion 
 

In this chapter, we’ve added some sophisticated tools to our image processing 
toolbox, including HSV↔RGB color space conversion, the Canny edge detection filter 
and separable implementations of a Gaussian blur, a median filter, and the Decimation in 
Time formulation of the Fast Fourier Transform.  We hope that these implementations, 
presented here in the industry standard DirectX 9 High Level Shading Language, are easy 
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for you to drop into your own image processing applications.  We also hope that they 
inspire you to create even more powerful image processing operations specific to your 
needs. 
 
Sample Application 
 

The image processing techniques presented in this chapter were developed using 
live and recorded video fed to Direct3D via the Microsoft Video Mixing Renderer 
(VMR).  The sample app, VideoShader, demonstrates the use of Direct3D and the VMR, 
with the above filters and several others implemented using HLSL.  Source for the 
sample application and all of the shaders is available on ATI Developer Relations website. 
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