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Introduction 
 

In this chapter, we present a technique for efficiently rendering a large crowd of 
characters while taking steps to avoid a repetitious appearance.  There are many typical 
scenes in games, such as large battles or stadium crowds, which require the rendering of 
large numbers of characters.  We will describe techniques used to draw such crowd 
scenes, including methods for rendering multiple characters per draw call, each with their 
own unique animation.  We will also outline tradeoffs which can be made between vertex 
and pixel processing in order to increase vertex throughput (the typical bottleneck in a 
crowd scene).  Next, we will discuss a set of pixel shading tricks to allow the individual 
characters to have a unique look, despite being drawn from the same instanced geometry 
as the other characters in the scene.  We will conclude with a discussion of instancing of 
shadow geometry. 

Instancing 
 

In order to achieve our goal of drawing over a thousand characters on screen 
simultaneously, we must first reduce the number of API calls needed to draw the 
geometry.  If we were to try to make a thousand or more draw calls through the API, we 
would quickly get swamped by API overhead and setup costs. Clearly, this means that we 
need to draw several characters per draw call.  In order to accomplish this, we pack a 
number of instances of character vertex data into a single vertex buffer.  We do all of the 
skinning on the graphics hardware, so we pack multiple character transforms into the 
constant store for each draw call.  This allows us to draw several unique instances of the 
character each with its own unique animation in a single draw call. 
 

Since we plan to do all character skinning in the vertex shader, the main factor 
which limits the number of characters we can draw per API call is the number of vertex 
shader constants available to store the characters’ skeletal animation data.  To keep the 
number of constants used by each character to a reasonable level, we limited the skeleton 
of each character to only twenty bones. While this number is quite low for a generic 
character, for a crowd scene this can be enough to create a good character animation.  At 
first glance, this gives us three characters per draw call (20 bones * 4 vectors * 3 
characters = 240 constants).  Due to the fact that animation data typically contains no 
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shears, it is possible to shave off one of the columns of each matrix. This brought our 
total up to 4 characters per draw call (20 bones * 3 vectors * 4 characters = 240 
constants).  We investigated using a quaternion plus a translation to store each bone 
transform, which would have further compressed the transforms and allowed us to draw 
even more characters per draw call.  However, the associated vertex shader cost (to 
effectively turn the quaternion into a transformation matrix) was a bit too high for our 
purposes and offset the gains made by being able to draw more instanced characters per 
call.  By drawing groups of four characters, we can reduce the number of draw calls to 
between 250 and 300 for a crowd of a thousand plus characters, which is reasonable for 
today’s hardware.  The downside of this tight constant store packing is that there is not a 
lot of room left over for additional constants. This is not too bad since all of the lighting 
will be performed in the pixel shader. The few constants needed in the vertex shader are 
the view/projection matrix and the camera position.  
 

It is also important to reduce the cost of the actual vertex shader processing in 
order to draw a large crowd, since vertex shading is generally the bottleneck for such 
scenarios.  To save vertex shader operations, we can store our character’s normal map in 
object space rather than tangent space and avoid having to skin the tangent and binormal 
vector, thereby saving two matrix multiplies. Using this method, we skin the normal 
vector in the pixel shader once it has been read from the normal map.  This technique 
requires that we pass the blended skinning matrix down to the pixel shader.  This blended 
matrix is computed before skinning the position in the vertex shader. The HLSL shader 
code for assembling and blending the matrices in the vertex shader is given below: 
 
    float4 rowA[80]; 
    float4 rowB[80]; 
    float4 rowC[80]; 
    float4x4 SiComputeSkinningMatrix3Rows (float4 aWeights,  
                                           int4 aIndices) 
    { 
        float4x4 mat = 0; 
        mat._m33 = 1.0f; 
        for (int bone = 0; bone < 4; bone++) 
        { 
            mat._m00 += (rowA[aIndices[bone]].x * aWeights[bone]); 
            mat._m10 += (rowA[aIndices[bone]].y * aWeights[bone]); 
            mat._m20 += (rowA[aIndices[bone]].z * aWeights[bone]); 
            mat._m30 += (rowA[aIndices[bone]].w * aWeights[bone]); 
 
            mat._m01 += (rowB[aIndices[bone]].x * aWeights[bone]); 
            mat._m11 += (rowB[aIndices[bone]].y * aWeights[bone]); 
            mat._m21 += (rowB[aIndices[bone]].z * aWeights[bone]); 
            mat._m31 += (rowB[aIndices[bone]].w * aWeights[bone]); 
 
            mat._m02 += (rowC[aIndices[bone]].x * aWeights[bone]); 
            mat._m12 += (rowC[aIndices[bone]].y * aWeights[bone]); 
            mat._m22 += (rowC[aIndices[bone]].z * aWeights[bone]); 
            mat._m32 += (rowC[aIndices[bone]].w * aWeights[bone]); 
        } 
        return mat; 
    } 
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Once this matrix has been computed, there is still a bit of work left for the vertex 
shader.  It needs to compute the skinned position and then multiply that by the view and 
projection matrix as shown in the following code. 
 
        float4x4 mSkinning = SiComputeSkinningMatrix3Rows (i.weights, 
                                                           i.indices); 
        float4 pos = mul (i.pos, mSkinning); 
        o.worldPos = pos; 
        o.pos = mul (pos, mVP); 
 

Additionally, the vertex shader needs to compute the view vector.  
 
      o.viewVec = normalize(worldCamPos – pos); 
 

The rest of the vertex shader is dedicated to passing along all of this information 
to the pixel shader. With these optimizations, the resulting vertex shader code weighs in 
at around sixty instructions. By combining all of these techniques, we are able to reduce 
the cost of vertex processing, which is generally the bottleneck when drawing large 
crowds of characters. 
 

Character Shading 
 

Even though the characters in our example are relatively low polygon models 
(1,100 triangles), we can still make them look quite detailed using per-pixel lighting. In 
our example, we use one directional light to simulate the lighting coming from the sun 
and up to three local diffuse lights. All of these lights use a normal map generated from a 
high resolution model as shown in Figure 1c.  Since these normals are in object space, we 
need to skin them by the matrix computed in the vertex shader.  The vertex shader passes 
down a 3×3 matrix and the pixel shader can simply multiply the fetched normal by this 
interpolated matrix. For diffuse lighting, we just use the Lambertian model. 
 

 
 (a) Base Map  (b) Gloss Map (c) Object Space Normal 

Map 
Figure 1 - Character Textures 
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In our application, specular lighting is only computed for the directional “sun” 
light. This is computed based on the view vector computed in the vertex shader. The 
HLSL code fragment below shows this computation. 
 
    float3 view = normalize (i.viewVector); 
    float3 reflectionVec = reflect (view, normal); 
    float RL = saturate (dot (reflectionVec, 
                             (float3)(vLightDirection)); 
    float3 specular = vLightColor * pow (RL, vLightDirection.w) * 
                      (gloss+.1); 
 

As you can see from the code, a gloss map such as the one shown in Figure 1b is 
used to attenuate the specular term. This allows for regions of differing shininess. Also 
note that the specular exponent is packed in with the interpolated light direction to avoid 
using up an additional constant vector. 
 

In order to give the characters an even more realistic look, an ambient occlusion 
map is used [Landis02]. This map is also generated from a high resolution model and 
roughly represents the amount of light that could possibly reach each texel on the model 
from the external lighting environment. The ambient occlusion map is shown in Figure 2a. 
This term is multiplied by the final lighting value (both diffuse and specular) and 
provides a realistic soft look to the character illumination. Since this map is pre-computed 
it is not technically correct for every frame of animation, however, the results are still 
quite compelling. 
 

The final term in our basic character lighting is a ground occlusion texture. This is 
a projected texture that represents an occlusion term based on a given character’s position 
on the terrain. It is similar to the technique described in [Hargreaves04].  In this 
technique we use our character’s position to access a ground-based occlusion texture as 
shown in Figure 2b. This texture represents roughly the amount of illumination on the 
character from the “sun” based upon his position on the terrain.  By using this texture, we 
can create the illusion that the characters are being softly shadowed by the terrain as they 
move around it. 
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(a) Ambient Occlusion (b) Ground Occlusion Texture 

Figure 2 - Occlusion Maps 
 

In order to implement this technique, the character’s position on the terrain needs 
to be turned into a texture coordinate. The computation of the texture coordinates for this 
texture is a simple scale and bias on the world space position, which is computed in the 
vertex shader and passed down to the pixel shader via a texture coordinate interpolator. 
 
    float2 floorCoord = vFloorCoordScale.xy * i.worldPos.xz +  
                        vFloorCoordBias.xy; 
    float floorAttenuation = tex2D (tFloor, floorCoord); 
 

The product of just these two occlusion terms is shown in Figure 3.  The ambient 
occlusion and terrain occlusion terms are both multiplied by the final lighting (both 
diffuse and specular). 
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Figure 3 - Occlusion Terms 

Random Coloring 
 

Up to this point, each of the characters has been shaded identically.  Though the 
animations are distinct and characters are individually shadowed with the terrain 
occlusion term, they still have a very uniform coloring.  While this can look reasonably 
good—and the sheer number of characters drawn gives an incredible impression—ideally 
each character could be distinctive in some way.  In order to accomplish this task, the 
shaders need some way to figure out which of the four characters in a given draw call is 
currently being processed.  If the constant store for the vertex shader is packed in such a 
way that all of the bones for the characters are contiguous within the constant store and 
the number of bones per character is known, the vertex shader can compute which 
character is being drawn. The code fragment for this is shown below. 
 
    float id = int((i.indices.x+.5)/nBones); 
 

In our example, we just want the characters to look different, so a vector of four 
random numbers is generated for each draw group.  For a given set of four characters, 
this set of four random numbers is the same every frame.  Given the character ID 
computed in the above code fragment, the vertex shader can then select one of these four 
random numbers and send the result down to the pixel shader using the following code: 
 
    float4 pick = float4(id==0,id==1,id==2,id==3); 
    float fRand = dot(pick, vRandomVec); 
    o.texCoord = float3(i.texCoord, fRand); 
 
A picture of the crowd drawn using just this random number can be seen in Figure 4. 
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Figure 4 - Character ID as color 

 
In the pixel shader, this random number is used to change the tinting on the 

different characters in the scene.  To do this, a small 2D texture, shown in Figure 5a, was 
created.  Note that this texture is 16×2.  That is, the texture contains 16 pairs of colors.  
Each pair of colors in this texture represents the darkest and lightest tinting of a given 
character.  In addition to these colors, a mask texture, shown in Figure 5b, was generated 
to specify which portions of the characters should be tinted.  The tinting then occurs by 
sampling both the dark and bright tint colors from the small 2D texture.  The luminance 
of the base texture is then used to interpolate between these two tint colors.  Finally, the 
mask texture is used to linearly interpolate between the tinted color and the untinted base 
color.  The code fragment for this can be found below. 
 
     float4 cColorLow  = tex2D(tColor, float2(0, i.texCoord.z)); 
     float4 cColorHigh = tex2D(tColor, float2(1, i.texCoord.z)); 
     base = lerp(base, lerp(cColorLow, cColorHigh, 
                            dot(float3(0.2125,0.7154,0.0721),base.xyz)), 
                 tex2D(tColorAlpha, i.texCoord.xy).r); 
 

Using this technique allows us to give each of the characters a slightly different 
color, increasing the variability of our crowd of instanced characters without increasing 
the size of our dataset or the number of draw calls made. 
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(a) Color lookup texture 

 
(b) Lerp texture 

Figure 5 - Character Color Modification Textures 
 

Random Decals 
In order to add further uniqueness to the characters, we also use the random 

number described in the previous section to selectively add decals to the characters’ 
uniforms. To accomplish this, we need two textures: A decal alpha texture which stores a 
different shade of gray as an id for each decal region (Figure 6a); and a decal color 
texture, which stores the decal images (Figure 6b). Both of these texture maps use the 
same texture coordinates as the base map. 
 

In order to selectively add the decals based on the random number, the pixel 
shader first fetches the decal id of the current sample from the decal alpha texture. If the 
value is non-zero, the pixel shader then has to determine whether to add the decal or not. 
The following piece of code determines whether to add the decal based on the random 
number passed down to the pixel shader and the decal ID: 
 
    float temax = tex2D(tDecalAlpha, i.texCoord.xy).r; 
    float fDecalAlpha = step(0.2, (temax*i.texCoord.z*1000.) % 1.) > 0; 
 

If fDecalAlpha is 1, then a decal sample is used for that pixel. Note that, because 
the computation fDecalAlpha uses the decal ID, some of the decals might be turned on 
while others might be turned off for a given character. 
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Figure 7 shows some examples of characters with different decals on the same 

location. By looking at the decal color texture (Figure 6b), one will notice that there are 
two color images stored for each decal, thus allowing us to randomly pick between the 
two different decals for a given decal region. One of the images is shifted a little bit to the 
right from the original decal region identified by the decal alpha texture (Figure 6a). This 
was possible because our decals were placed in such a way that we could create a shifted 
copy without overlapping the original. We would expect it to be possible to create a 
shifted copy in some direction in most cases, unless the character has decals covering a 
very large portion of the base map. Below is the code to randomly determine whether to 
use the shifted decal, and to set the base color to be either the value of the base map, or 
the value of the decal map, depending on fDecalAlpha. 
 
    float2 decalBias = float2(0.068359, 0.0); 
    //determines whether to bias or not on the decal lookup 
    decalBias *= int(i.texCoord.z * 4322. % 2.);  
 
    base = lerp(base, tex2D(tDecal, i.texCoord.xy+decalBias), 
                fDecalAlpha); 
 

  
(a) Decal Alpha Texture (b) Decal Color Texture 

Figure 6 - Character Decal Textures 
 

An important observation is that the decal alpha texture must be sampled using 
“nearest” as the filter. That is because, if bilinear or trilinear interpolation is used, the 
border of the decals could assume different shades of gray, thus having different decal 
IDs, causing it to possibly be selected when it should not, or vice-versa. Even if “nearest” 
is used, we get some aliasing artifacts at the decal boundaries. In order to remove these 
artifacts, we make the colors of the decal and the base map match closely near the 
boundary. 
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Figure 7 – Decals Applied 

Shadows 
 

Shadows are an important visual cue for placing characters on the terrain. Given 
the number of characters we are drawing, it would be impractical to use a sophisticated 
shadow volume or shadow depth map approach to generate shadows.  In our example, we 
have a fixed directional light and the characters’ only animation is to run.  These 
conditions allowed for a sequence of shadow maps to be pre-generated (see Figure 8).  
These shadow maps are stored as a 2D texture and, with a bit of math in the vertex shader, 
we can figure out the texture coordinates for each frame of animation.  The trick then 
becomes how to position quads with these textures on the terrain in a convincing way as 
well as how to draw them efficiently. 
 

 
Figure 8 – Character Shadow Texture 

 
Similar to the way we draw the actual characters, the shadow quads are drawn in 

large instanced batches. A vertex buffer is populated with two hundred quads onto which 
we will texture map our characters’ shadows.  We then draw several of these batches per 
frame to draw the shadows for all of the characters in just a few draw calls. As with the 
characters themselves, the shadow quads’ transformations are handled by the vertex 
shader hardware. 
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Like the character animation, vertex shader constant store is the limiting factor 
which determines how many shadows we can draw in a single call. In order to draw the 
shadow quads efficiently, we pack the constant store with a very specific transformation 
that is compressed significantly. A single 4D constant vector is used to represent the 
transform for each shadow quad, allowing us to draw many shadow quads in one API call.  
The first three components of each shadow quad transformation vector represent the 
translation of the quad (i.e. its position in 3-space).  The last component is divided into 
two parts. The integer portion is the frame number for the shadow map animation.  This 
is later used to index into the precomputed shadow texture. The fractional part of the last 
component represents the slope of the running character. This slope is used to angle the 
quad to match the terrain. Each quad vertex contains a single “bone” index which is used 
by the vertex shader to reach into the constant store and get the proper transform. The 
vertex shader code to unpack and transform the vertices is shown below: 
 
    float4 vPosFrameSlope = vTransFS[i.indices.x]; 
    float slope = frac (vPosFrameSlope.w); 
    float frame = vPosFrameSlope.w - slope; 
    slope = 2.0*slope - 1.0; 
    float4 pos = float4 (vPosFrameSlope.xyz, 0.0) + i.pos; 
    pos.y += slope * i.pos.z; 
    o.worldPos = pos; 
 

By using this efficient packing, the shadow quads can be drawn in blocks of two 
hundred, making them very hardware and API friendly.  In order to avoid incorrect Z 
occlusions, the vertex shader performs a pseudo Z-bias. The vertex shader code for this is 
shown below:  
 
    o.pos = mul (pos, mVP); 
    float invCamDistance = 1.0/sqrt (dot (pos - worldCamPos,  
                                          pos - worldCamPos)); 
    o.pos.z -= 2000.0 * invCamDistance; 
 

The pixel shader then looks up the proper frame from the shadow map texture. In 
order to keep the shadows consistent with the character lighting, the shadow quad pixel 
shader also needs to perform the same dimming based on the ground occlusion texture. 
The results of all these steps can be seen in Figure 9 which shows a screenshot from the 
final demo. 
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Figure 9: Final Result 

 

Conclusion 
 

We have presented a technique for efficiently rendering large crowds of 
characters in real time using standard APIs.  We have demonstrated processing tradeoffs 
that can be made to reduce vertex shader load in order to increase the number of 
characters that can be drawn in a given scene.  We have also discussed a number of pixel 
shader techniques which allow us to reduce the appearance of repetition in the crowds of 
instanced characters.  Finally, we concluded with a discussion of instancing of shadow 
geometry to further integrate our animated crowd of characters into our scene. 
 

While we have employed some clever tricks to implement instancing, we have 
done it in a robust manner on existing APIs.  In fact, there is no reason that many of these 
techniques cannot be ported all the way down to 1.1 shader hardware.  Microsoft has also 
recognized the importance of instancing for scenarios like large crowd scenes and has 
retrofitted an instancing API into DirectX 9.  This allows devices which support 
instancing to use one DrawIndexedPrimitive() call to draw multiple instances of the 
same object with unique per-instance data such as transforms.  This only works with 
indexed primitives.  We refer you to the latest DirectX SDK for documentation and 
sample code which illustrates proper usage of this new instancing API. 
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